首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We obtain isospectral Euler-Bernoulli beams by using factorization and Lie symmetry techniques. The canonical Euler-Bernoulli beam operator is factorized as the product of a second-order linear differential operator and its adjoint. The factors are then reversed to obtain isospectral beams. The factorization is possible provided the coefficients of the factors satisfy a system of non-linear ordinary differential equations. The uncoupling of this system yields a single non-linear third-order ordinary differential equation. This ordinary differential equation, called the principal equation, is analyzed, reduced or solved using Lie group methods. We show that the principal equation may admit a one-dimensional or three-dimensional symmetry Lie algebra. When the principal system admits a unique symmetry, the best we can do is to depress its order by one. We obtain a one-parameter family of invariant solutions in this case. The maximally symmetric case is shown to be isomorphic to a Chazy equation which is solved in closed form to derive the general solution of the principal equation. The transformations connecting isospectral pairs are obtained by numerically solving systems of ordinary differential equations using the fourth-order Runge-Kutta method.  相似文献   

2.
Separable solutions admitted by a nonlinear partial differential equation modeling the axisymmetric spreading under gravity of a thin power-law fluid on a horizontal plane are investigated. The model equation is reduced to a highly nonlinear second-order ordinary differential equation for the spatial variable. Using the techniques of Lie group analysis, the nonlinear ordinary differential equation is linearized and solved. As a consequence of this linearization, new results are obtained.  相似文献   

3.
具有可积微分约束的力学系统的Lie对称性   总被引:7,自引:0,他引:7  
梅凤翔 《力学学报》2000,32(4):466-472
研究具有可积微分约束的力学系统的Lie对称性与守恒量。采用两种方法:一是用不可积微分约束系统的方法;另一是用积分后降阶系统的方法,研究两种方法之间的关系。  相似文献   

4.
Lagrange-Maxwell系统的Lie对称性与守恒量   总被引:3,自引:0,他引:3  
由微分方程在无限小主为换下的不变性,定义Lagrange-Maxwell方程元限元小变失生成元,给出Lie对称性的确定方程,得到结构方程和守恒量。  相似文献   

5.
The present paper deals with the multiple solutions and their stability analysis of non-Newtonian micropolar nanofluid slip flow past a shrinking sheet in the presence of a passively controlled nanoparticle boundary condition. The Lie group transformation is used to find the similarity transformations which transform the governing transport equations to a system of coupled ordinary differential equations with boundary conditions. These coupled set of ordinary differential equation is then solved using the RungeKutta-Fehlberg fourth-fifth order(RKF45) method and the ode15 s solver in MATLAB.For stability analysis, the eigenvalue problem is solved to check the physically realizable solution. The upper branch is found to be stable, whereas the lower branch is unstable. The critical values(turning points) for suction(0 sc s) and the shrinking parameter(χc χ 0) are also shown graphically for both no-slip and multiple-slip conditions. Multiple regression analysis for the stable solution is carried out to investigate the impact of various pertinent parameters on heat transfer rates. The Nusselt number is found to be a decreasing function of the thermophoresis and Brownian motion parameters.  相似文献   

6.
1 IntroductionandProblemsTotheordinarydifferentialequationsdY dt=A(t,Y)Y ,Y∈Rn,t≥ 0 ,( 1 )A(t,Y)isskewsymmetrymatrix .Fromd(YTY) dt=(Y′) TY YTY′=YT(AT A)Y =0 ,and‖Y( 0 )‖ =a ,aisapositivenumber,wecanget‖Y(t)‖ =a .Totheordinarydifferentialequationsofthesquareconservingproperty ( 1 ) ,classicalnumericalmethods,suchasexplicitRunge_Kuttamethods,multiplestepmethods,cannotpreservethesquareconservingproperty.Theimplicitmiddleschemecanpreservethesquareconservingproperty ,butitis…  相似文献   

7.
Lie symmetry method is applied to analyze a nonlinear elastic wave equation for longitudinal deformations with third-order anharmonic corrections to the elastic energy. Symmetry algebra is found and reductions to second-order ordinary differential equations (ODEs) are obtained through invariance under different symmetries. The reduced ODEs are further analyzed to obtain several exact solutions in an explicit form. It was observed in the literature that anharmonic corrections generally lead to solutions with time-dependent singularities in finite times singularities, we also obtain solutions which Along with solutions with time-dependent do not exhibit time-dependent singularities.  相似文献   

8.
Lie group theory is used to obtain point symmetries of the boundary layer equations derived in the literature for the high Weissenberg number flow of upper convected Maxwell (UCM) and Phan-Tien-Tanner (PTT) type of viscoelastic fluids. The equations are reduced to ordinary differential equation systems with the use of scaling and spiral transformation groups. Similarity solutions are obtained and discussed for different cases such as flow around corners, flow over moving and stretching walls, and exponential shear flows.  相似文献   

9.
非Четаев型非完整系统的Lie对称性与守恒量   总被引:29,自引:0,他引:29  
研究非Четаев型非完整系统的Lie对称性.首先利用微分方程在无限小变换下的不变性建立Lie对称所满足的确定方程和限制方程,给出结构方程并求出守恒量;其次研究上述问题的逆问题:根据已知积分求相应的Lie对称性;最后举例说明结果的应用.  相似文献   

10.
Lie group analysis is applied to carry out the similarity reductions of the \((3+1)\)-dimensional Calogero–Bogoyavlenskii–Schiff (CBS) equation. We obtain generators of infinitesimal transformations of the CBS equation and each of these generators depend on various parameters which give us a set of Lie algebras. For each of these Lie algebras, Lie symmetry method reduces the \((3+1)\)-dimensional CBS equation into a new \((2+1)\)-dimensional partial differential equation and to an ordinary differential equation. In addition, we obtain commutator table of Lie brackets and symmetry groups for the CBS equation. Finally, we obtain closed-form solutions of the CBS equation by using the invariance property of Lie group transformations.  相似文献   

11.
This paper is concerned with the time fractional Sharma–Tasso–Olver (FSTO) equation, Lie point symmetries of the FSTO equation with the Riemann–Liouville derivatives are considered. By using the Lie group analysis method, the invariance properties of the FSTO equation are investigated. In the sense of point symmetry, the vector fields of the FSTO equation are presented. And then, the symmetry reductions are provided. By making use of the obtained Lie point symmetries, it is shown that this equation can transform into a nonlinear ordinary differential equation of fractional order with the new independent variable ξ=xt ?α/3. The derivative is an Erdélyi–Kober derivative depending on a parameter α. At last, by means of the sub-equation method, some exact and explicit solutions to the FSTO equation are given.  相似文献   

12.
In this paper the (2+1)-nonlinear diffusion equation u t ?div(f(u)grad u)=0 with variable diffusivity is considered. Using the Lie method, a complete symmetry classification of the equation is presented. Reductions, via two-dimensional Lie subalgebras of the equation, to first- or second-order ordinary differential equations are given. In a few interesting cases exact solutions are presented.  相似文献   

13.
The Lie symmetries and the conserved quantities of the second-order nonholonomic mechanical system are studied. Firstly, by using the invariance of the differential equation of motion under the infinitesimal transformations, the determining equations and the restriction equations of the Lie symmetries of the system are established, and the structure equation and the conservative quantities of the Lie symmetries are obtained. Secondly , the inverse problems of the Lie symmetries are studied . Finally , an example is given to illustrate the application of the result.  相似文献   

14.
Lie symmetries and conserved quantities of holonomic variable mass systems   总被引:5,自引:0,他引:5  
In this paper, the Lie symmetries and the conserved quantities of the holonomic variable mass systems are studied. By using the invariance of the ordinary differential equations under the infinitesimal transformations, the determining equations and the conserved quantities are given. And an example is given to illustrate the application of the result. Foundation item: the National Natural Science Foundation of China (19572038)  相似文献   

15.
The spreading of a thin liquid drop under gravity and small surfacetension on a slowly dropping flat plane is investigated. The initialslope of the flat plane is assumed to be small. By considering astraightforward forward perturbation, the fourth-order nonlinear partialdifferential equation modelling the spreading of the liquid drop reducesto a second-order nonlinear partial differential equation. Thisresulting equation is solved using the classical Lie group method. Thegroup invariant solution is found to model the long time behaviour ofthe liquid drop.  相似文献   

16.
The two-dimensional equations of motions for the slowly flowing and heat transfer in second grade fluid are written in cartesian coordinates neglecting the inertial terms. When the inertia terms are simply omitted from the equations of motions the resulting solutions are valid approximately for Re?1. This fact can also be deduced from the dimensionless form of the momentum and energy equations. By employing Lie group analysis, the symmetries of the equations are calculated. The Lie algebra consist of four finite parameter and one infinite parameter Lie group transformations, one being the scaling symmetry and the others being translations. Two different types of solutions are found using the symmetries. Using translations in x and y coordinates, an exponential type of exact solution is presented. For the scaling symmetry, the outcoming ordinary differential equations are more involved and only a series type of approximate solution is presented. Finally, some boundary value problems are discussed.  相似文献   

17.
IntroductionTheconceptofthesecondgradefluidcanbedevelopedasanexpansionintermsoffadingmemorytotheNewtonianfluid .Insodoing ,higherorderderivativesofthevelocityfieldarerequired.However,secondorderfluidmayprovideonlyanapproximationtorealviscoelasticbehavior.Thephysicalmeaning ,ifany ,ofthehighorderderivativesisunclearnevertheless,theRivlinEricksensecondorderfluidiscommonlyusedandfurtherstudyseemswarranted .TheStokesflowsolutionsandthecreepingsecondgradefluidflowsolutionsarepresentedqualitativel…  相似文献   

18.
In 1883, S. Lie found the general form of all second-order ordinary differential equations transformable to the linear equation by a change of variables and proved that their solution reduces to integration of a linear third-order ordinary differential equation. He showed that the linearizable equations are at most cubic in the first-order derivative and described a general procedure for constructing linearizing transformations by using an over-determined system of four equations. We present here a simple geometric proof of the theorem, known as Lie's linearization test, stating that the compatibility of Lie's four auxiliary equations furnishes a necessary and sufficient condition for linearization.  相似文献   

19.
In Nonenmacher (1984) [1] an admitted Lie group of transformations for the spatially homogeneous and isotropic Boltzmann equation with sources was studied. In fact, the author is Nonenmacher (1984) [1] considered the equation for a generating function of the power moments of the Boltzmann equation solution. However, this equation is still a non-local partial differential equation, and this property was not taken into account there. In the present paper the admitted Lie group of this equation is studied, using our original method developed for group analysis of equations with non-local operators (Grigoriev and Meleshko, 1986; Meleshko, 2005; Grigoriev et al., 2010 [2], [3], [4]). The Lie groups obtained are compared with Nonenmacher (1984) [1]. The deficiency of Nonenmacher (1984) [1] is corrected.  相似文献   

20.
This paper examines a steady two-dimensional flow of incompressible fluid over a vertical stretching sheet. The fluid viscosity is assumed to vary as a linear function of temperature. A scaling group of transformations is applied to the governing equa- tions. The system remains invariant due to some relations among the transformation parameters. After finding three absolute invariants, a third-order ordinary differential equation corresponding to the momentum equation and two second-order ordinary differential equations corresponding to energy and diffusion equations are derived. The equations along with the boundary conditions are solved numerically. It is found that the decrease in the temperature-dependent fluid viscosity makes the velocity decrease with the increasing distance of the stretching sheet. At a particular point of the sheet, the fluid velocity decreases but the temperature increases with the decreasing viscosity. The impact of the thermophoresis particle deposition plays an important role in the concentration boundary layer. The obtained results are presented graphically and discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号