首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The infrared spectra (4,000–30 cm?1) of the gas and solid and the Raman spectrum of liquid 2,2-difluoroethanol as well as variable temperature infrared spectra of krypton/xenon solutions have been recorded. From all these data, two (Gg and Tg) out of the five possible stable conformers have been confidently identified. The order of the stabilities has been predicted to be Gg > Tg > Gt > Gg′ > Tt by utilizing ab initio MP2 (full) and DFT (B3LYP method) calculations, where the first indicator (capital letter) is in reference to rotation around the C–C bond (G = gauche or T = trans) and the second one (small letter) refers to the orientation of the hydroxyl group. The percentage of the minor conformer Tg, at ambient temperature, is estimated to be (16 ± 3%). The optimized geometries, fundamental frequencies, infrared intensities, Raman activities, and depolarization values as well as centrifugal distortion constants have been obtained from ab initio and density functional theory calculations by utilizing a variety of basis sets as well as those with diffuse functions. By utilizing the previously reported microwave rotational constants for two isotopomers of the Gg conformer combined with ab initio MP2(full)/6-311+G(d,p) predicted structural values, adjusted r 0 parameters have been obtained. The determined heavy atom distances (Å) for the Gg conformer are: C1–C2 = 1.510(3), C2–F4 = 1.371(3), C2–F5 = 1.362(3), C1–O3 = 1.412(3) Å and angles ∠O3C1C2 = 111.0(5), ∠F4C2C1 = 108.8(5), ∠F5C2C1 = 109.8(5), τF4C2C1O3 = 63.5(5), τF5C2C1O3 = 179.1(5)°. Barriers of internal rotation have been obtained and vibrational assignments for the Gg and Tg conformers are given. The five predicted centrifugal distortion constants compared to the experimental values are in reasonable agreement except for ?K, which appears to be in error. The results are discussed and the structural parameters compared to the corresponding ones for 2-fluoroethanol and 2,2,2-trifluoroethanol where those for the latter molecule have been redetermined. The currently determined heavy atom parameters are quite different from the earlier assumed values, which led to poor values of the six adjusted parameters.  相似文献   

2.
The Raman (3200 to 10 cm–1) and infrared (3500 to 50 cm–1) spectra of vinyl chloroformate, H2C=CHOC(O)Cl, have been recorded for both the gas and solid. Additionally, the Raman spectrum of the liquid has been recorded, and depolarization ratios have been obtained. These data have been interpreted on the basis that the only stable conformation present at ambient temperature is thetrans-trans rotamer, where the firsttrans refers to the vinyl moiety relative to the O—CCl bond and the second to the C—Cl bond relative to the=C—O bond. Using harmonic rigid asymmetric top calculations, the infrared vapor phase contours for the C=O and the C=C stretch were predicted for thetrans-trans and for thecis-trans conformer, and were compared with experiment. For both fundamentals thetrans-trans hybrid reproduces the experimental contour, whereas thecis-trans contours fail to do so for both fundamentals. From far-infrared spectrum of the vapor obtained at 0.1 cm–1 resolution, the C(O)Cl andO-vinyl torsional fundamentals have been observed at 132 and 61 cm–1, respectively. Ther 0 structural parameters have been obtained from a combination of ab initio calculated parameters with appropriate offset values and the fit of the microwave rotational constants for the two naturally occurring chlorine isotopes. The structure, barrier to internal rotation, and vibrational frequencies have been determined from ab initio Hartree-Fock gradient calculations, using the 3-21G* and 6-31G* basis sets. These results are compared to those obtained experimentally and to similar quantities for some related molecules.  相似文献   

3.
The Raman (3500-30 cm−1) spectra of liquid and solid and the infrared (3500-40 cm−1) spectra of gaseous and solid 3-methyl-3-butenenitrile, CH2C(CH3)CH2CN, have been recorded. Both cis and gauche conformers have been identified in the fluid phases but only the cis form remains in the solid. Variable temperature (−55 to −100 °C) studies of the infrared spectra of the sample dissolved in liquid xenon have been carried out. From these data, the enthalpy difference has been determined to be 163±16 cm−1 (1.20±0.19 kJ mol−1), with the cis conformer the more stable rotamer. It is estimated that there is 48±2% of the gauche conformer present at  25°C. A complete vibrational assignment is proposed for the cis conformer based on infrared band contours, relative intensities, depolarization ratios and group frequencies. Several of the fundamentals for the gauche conformer have also been identified. The vibrational assignments are supported by normal coordinate calculations utilizing ab initio force constants. Complete equilibrium geometries have been obtained for both rotamers by ab initio calculations employing the 6-31G(d), 6-311G(d,p), 6-311+G(d,p) and 6-311+G(2d,2p) basis sets at the levels of restricted Hartree-Fock (HF) and/or Møller-Plesset perturbation theory to the second order (MP2). Only with the 6-311G(2d,2p) and 6-311G(2df,2pd) basis sets with or without diffuse functions is the cis conformer predicted to be more stable than the gauche form. The potential energy terms for the conformational interchange have been obtained at the MP2(full)/6-311+G(2d,2p) level, and compared to those obtained from the experimental data. The results are discussed and compared to the corresponding quantities obtained for some similar molecules.  相似文献   

4.
Variable temperature (?55 to ?105 °C) studies of the infrared spectra (4000–400 cm?1) of chlorocyclohexane (c-C6H11Cl) dissolved in liquefied xenon have been carried out. The infrared spectra of the gas and solid have also been recorded from 4000–100 cm?1. By analyzing six conformer pairs in the xenon solution, a standard enthalpy difference of 132 ± 13 cm?1 (1.58 ± 0.16 kJ/mol) was obtained with the equatorial conformer the more stable form. At ambient temperature, the abundance of the axial conformer is 34 ± 1%. The potential surface describing the conformational interchange has been determined and the Fourier coefficients were obtained. From MP2 ab initio calculations utilizing various basis sets with and without diffuse functions, the equatorial conformer is predicted to be more stable by 161 ± 18 cm?1 from the four largest basis set calculations, which is consistent with the experimental results. However, the average from the corresponding B3LYP density functional theory calculations is 274 ± 15 cm?1 which is certainly too large. By utilizing the previously reported microwave rotational constants for two isotopomers (35Cl, 37Cl) combined with the structural parameters predicted from the MP2(full)/6-311+G(d,p) calculations, adjusted r 0 structural parameters have been obtained. The determined heavy atom distances for the most stable chair-equatorial conformer in Å are: r 0(C1–C7,8) = 1.532(3); r 0(C7,8–C13,14) = 1.536(3); r 0(C4–C13,14) = 1.524(3); and r 0(C4–Cl6) = 1.802(5) and the angles in degrees: ∠C1C7,8C13,14 = 111.3(5)º; ∠Cl6C4C13,14 = 109.7(5)º with the two dihedral angles ∠C8C1C7C13 = 56.3(10)º and ∠C14C4C13C7 = 56.7(10)º. These parameters are in good agreement with those reported earlier from microwave and electron diffraction studies where the CC and CH distances were all assumed to be equal. A few of the previously reported vibrational assignments have been corrected. The results of these spectroscopic and theoretical studies are discussed and compared to the corresponding results for some similar molecules.  相似文献   

5.
The Raman spectra (3200–10 cm−1) of ethyl methyl selenide in the gas, liquid and solid phases and the infrared spectra (3200–30 cm−1) of the gas and solid have been recorded. Qualitative depolarization ratios have been obtained for the lines in the Raman spectrum of the liquid. By a variable temperature Raman study of the liquid, it has been determined that the gauche conformer is more stable than the trans rotamer by 158±16 cm−1 (452±46 cal mol−1), and the gauche conformer is the rotamer present in the solid. A complete vibrational assignment for the gauche conformer is presented. All of these data are compared to the corresponding quantities obtained from ab initio Hartree—Fock gradient calculations employing the STO-3G* and 4–31G*/MIDI-4* basis sets. Complete equilibrium geometries have been calculated for both rotamers and the results are discussed and compared with the corresponding quantities for some similar molecules.  相似文献   

6.
From analysis of the infrared and Raman spectra along with support from the ab initio predictions it is concluded that there is only one stable conformer of dimethylaminodifluorophosphine, (CH(3))(2)NPF(2), in the gaseous and liquid phases which has a planar PNC(2) moiety with C(s) symmetry. The adjusted r(0) structural parameters have been obtained by combining the MP2(full)/6-311+G(d) predicted values with the previous reported rotational constants for four isotopomers obtained from previously reported microwave studies. The difference in the two NC distances is 0.002A whereas, these two parameters were previously assumed to have the same values from the microwave and electron diffraction studies but a reported difference of 0.025A from the structural parameters of the crystal. The adjusted r(0) heavy atom distances and angles are: r(PF)=1.593(3); r(NP)=1.654(3); r(NC(i))=1.455(3); r(NC(o))=1.453(3) A; angleFPF=93.5(5); angleNPF=100.8(5); angleCNC=116.0(5); angleC(i)NP=124.1(5); angleC(o)NP=120.0 degrees . The planar bonding around the nitrogen atom is consistent with the previously reported structural information from the microwave study but differs from the slightly pyramidal bonding obtained in the electron diffraction investigation. To support the vibrational assignment MP2(full) ab initio calculations with the 6-31G(d) basis set were carried out to predict the fundamental vibrational frequencies, infrared intensities, Raman activities, depolarization values, infrared band contours, and centrifugal distortion constants. Vibrational assignments are given for (CH(3))(2)NPF(2) and (CD(3))(2)NPF(2) and comparisons are made with the predicted intensities, frequencies and centrifugal distortion constants. Frequencies of some of the lattice modes are reported from both the infrared and Raman spectra with suggested assignments based on the factor group symmetry of the crystal of D(2h)(16) (Pnma) with four molecules per primitive cell. These results are compared to the corresponding quantities of some similar molecules.  相似文献   

7.
The microwave spectrum of cyclobutylisocyanate, c-C4H7NCO, has been investigated from 21,000 to 11,000 MHz and 11 transitions for the more stable equatorial-trans conformer were assigned. The rotational constants of the ground vibrational state have been determined and the molecule has been shown to be a near symmetric prolate rotor (К = ?0.99). The B and C rotational constants have been confidently determined to be B = 1508.68(3) and C = 1476.55(2) MHz, respectively, whereas the value for the A rotational constant of 6,891(302) MHz had a large uncertainty. Variable temperature (?100 to ?55 °C) studies of the infrared spectra (3,500–400 cm?1) of cyclobutylisocyanate dissolved in liquid xenon as well as the infrared spectra of the gas and solid have been recorded. In addition, the Raman spectra (3,600–100 cm?1) of the liquid have been investigated. These spectral data indicated the present of three conformers in the fluid states which are the equatorial-trans, equatorial-gauche, and axial-trans forms. The second part of the conformational name refers to the relative position of the NCO moiety relative to the alpha hydrogen. By utilizing four conformer pairs, an enthalpy difference of 131 ± 13 cm?1 (1.57 ± 0.16 kJ/mol) was obtained with the equatorial-trans conformer the more stable form, which is in good agreement with the ab initio predicted value of 137 ± 36 cm?1 (1.64 ± 0.43 kJ/mol). To aid in the vibrational assignment, ab initio and DFT calculations have been carried out by using a variety of basis sets up to 6-311G(3df,3pd).  相似文献   

8.
The far infrared spectrum from 370 to 50 cm−1 of gaseous 2-bromoethanol, BrCH2CH2OH, was recorded at a resolution of 0.10 cm−1. The fundamental O–H torsion of the more stable gauche (Gg′) conformer, where the capital G refers to internal rotation around the C–C bond and the lower case g to the internal rotation around the C–O bond, was observed as a series of Q-branch transitions beginning at 340 cm−1. The corresponding O–H torsional modes were observed for two of the other high energy conformers, Tg (285 cm−1) and Tt (234 cm−1). The heavy atom asymmetric torsion (rotation around C–C bond) for the Gg′ conformer has been observed at 140 cm−1. Variable temperature (−63 to −100°C) studies of the infrared spectra (4000–400 cm−1) of the sample dissolved in liquid xenon have been recorded. From these data the enthalpy differences have been determined to be 411±40 cm−1 (4.92±0.48 kJ/mol) for the Gg′/Tt and 315±40 cm−1 (3.76±0.48 kJ/mol) for the Gg′/Tg, with the Gg′ conformer the most stable form. Additionally, the infrared spectrum of the gas, and Raman spectrum of the liquid phase are reported. The structural parameters, conformational stabilities, barriers to internal rotation and fundamental frequencies have been obtained from ab initio calculations utilizing different basis sets at the restricted Hartree–Fock or with full electron correlation by the perturbation method to second order. The theoretical results are compared to the experimental results when appropriate. Combining the ab initio calculations with the microwave rotational constants, r0 adjusted parameters have been obtained for the three 2-haloethanols (F, Cl and Br) for the Gg′ conformers.  相似文献   

9.
The asymmetric torsional potential function, conformational energy difference, vibrational frequencies, and structural parameters of Cyclopropane-carboxaldehyde have been obtained from ab initio calculations at the 3–21G and/or 6-31G* baiss set levels. These results have allowed for a reinterpretation or clarification of some of the corresponding results obtained from experiment. The conformations that have the oxygen atom oriented cis and trans to the three-membered ring are observed and calculated to be the most stable and high energy forms in the gaseous phase, respectively. From the ab initio calculations using the 6–31 G* basis set, the energy difference between the two conformers is 114 cm–1. For the liquid, the trans conformer is more stable and is the only rotamer present in the annealed solid. Based on a combination of results obtained from ab initio calculations, microwave spectroscopy, and the electron diffraction technique,r o structural parameters have been obtained for both conformations.  相似文献   

10.
The far-infrared spectra (350–35 cm–1) of gaseous ethyl methyl ether-d 0 and ethyl methyl-d 3-ether have been recorded at a resolution of 0.10 cm–1. For the d 0 species, the fundamental asymmetric torsion of the more stable trans conformer (two methyl moieties are trans to one another) has been observed at 115.40 cm–1 with four upper state transitions falling to lower frequency, whereas, for the gauche form, it has been observed at 93.56 cm–1 with two excited states falling to lower frequency. the corresponding series for the d 3 species start from 106.00 and 87.10 cm–1, respectively. From these data, the asymmetric torsional potential coefficients for the d 0 species have been determined to be: V 1 = 572 ± 30; V 2 = 85 ± 8; V 3 = 619 ± 30; V 4 = 175 ± 18, and V 6 = –28 ± 3 cm–1. The trans to gauche and gauche to gauche barriers were calculated to be 958 cm–1 (11.5 kJ/mol) and 631 cm–1 (7.55 kJ/mol), respectively, with an energy difference of 550 ± 6 cm–1 (6.58 ± 0.07 kJ/mol). Utilizing three conformer pairs, variable temperature studies (–105 to –150°C) of the infrared spectra of the d 0 sample dissolved in liquid krypton gave an enthalpy difference of 547 ± 28 cm–1 (6.54 ± 0.33 kJ/mol) with the trans conformer the more stable rotamer. It is estimated that there is only 4% of the gauche conformer present at ambient temperatures. The structural parameters, conformational stabilities, barriers to internal rotation, and fundamental vibrational frequencies, which have been determined experimentally, are compared to those obtained from ab initio gradient predictions from RHF/6-31G* and with full electron correlation at the MP2 level with three different basis sets. The adjusted r 0 structural parameters have been obtained for the trans conformer from combined ab initio MP2/6-311+G** predictions and previously reported microwave rotational constants. The reported distances should be accurate to 0.003 Å and the angles to 0.5°. These results are compared to the corresponding quantities obtained for some similar molecules.  相似文献   

11.
The Raman (3100–10 cm−1) and infrared (3100–30 cm−1) spectra of difluoroacetyl chloride, CHF2CClO, in the gas and solid phases have been recorded. Additionally, the Raman spectrum of the liquid with qualitative depolarization ratios has been obtained. From these data, a trans/gauche equilibrium is proposed in the gas and liquid phases, with the trans conformer (hydrogen atom eclipsing the oxygen atom and trans to the chlorine atom) the more stable form in the gas, but the gauche rotamer is more stable in the liquid and is the only form present in the annealed solid. From the study of the Raman spectrum of the gas at different temperatures, a value of 272 ± 115 cm−1 (778 ± 329 cal mol−1) was determined for ΔH, with the trans conformer the more stable form. Similar studies were carried out on the liquid and a value of 109 ± 9 cm−1 (312 ± 26 cal mol−1) was obtained for ΔH, but now the gauche conformer is the more stable form. A potential function for the conformational interchange has been determined with the following potential constants: V1 = 397 ± 23, V2 = −101 ± 5, V3 = 474 ± 3, V4 = −50 ± 3, and V6 = 10 ± 2 cm−1. This potential has the trans rotamer more stable by 179 ± 31 cm−1 (512 ± 89 cal mol−1) than the gauche conformer. A complete vibrational assignment is proposed for both conformers based on infrared band contours, Raman depolarization data, group frequencies and normal coordinate calculations. The experimental conformational stability, barriers to internal rotation, and fundamental vibrational frequencies are compared with those obtained from ab initio Hartree-Fock gradient calculations employing both the RHF/3-21G* and RHF/6-31G* basis sets, and to the corresponding quantities obtained for some similar molecules.  相似文献   

12.
Ab initio calculations with full electron correlation by the perturbation method to second order and hybrid density functional theory calculations by the B3LYP method utilizing the 6-31G(d), 6-311+G(d, p), and 6-311+G(2d, 2p) basis sets have been carried out for the XNCO and XOCN (X = H, F, Cl, Br) molecules. From these calculations, force constants, vibrational frequencies, infrared intensities, Raman activities, depolarization ratios, and structural parameters have been determined and compared to the experimental quantities when available. By combining previously reported rotational constants for HNCO, ClNCO and BrNCO with the ab initio MP2/6-311+G(d, p) predicted structural values, adjusted r0 parameters have been obtained. The r0 values for BrNCO are: r(BrN) = 1.857(5); r(NC) = 1.228(5); r(CO) = 1.161(5) Å; BrNC = 117.5(5) and NCO = 172.3(5)°. For ClNCO the determined r0 parameters are in excellent agreement with the previously determine rs values, whereas those for HNCO the HNC angle is larger with a value of 126.3(5)° compared to the previous reported value of 123.9(17)°. However, considering the relatively large uncertainty in the value given initially the two results are in near agreement. Structural parameters are also estimated for FNCO and XOCN (X = H, F, Cl, Br). The centrifugal distortion constants have been calculated and are compared to the experimentally (XNCO: X = H, Cl, Br) determined values. Predicted values for the barriers of linearity are given for both the XNCO (X = H, F, Cl, Br) molecules and the results were compared to the corresponding isothiocyanate molecules. The predicted frequencies for the fundamentals of the XNCO molecules compare favorably to the experimental values but some of the predicted intensities differ significantly from those in the observed spectra. The two OCN bends for HOCN have been assigned and the frequencies for the two corresponding fundamentals of DOCN are predicted.  相似文献   

13.
We report a theoretical study of the ground electronic state of BiH3. The potential energy surface (PES) is obtained from coupled cluster CCSD(T) calculations with a large basis set (289 contracted Gaussian functions). The previously available quartic force field (P4) is extended by adding the dominant quintic and sextic stretching terms to yield improved potential functions in symmetry coordinates (P6) and Morse-type coordinates (M4). Second-order rovibrational perturbation calculations on the P4-PES and full variational calculations on the P6-PES and M4-PES yield almost identical vibrational term values which is rationalized by considering the local mode behavior of BiH3 and the Morse-type character of the M4-PES. The remaining deviations between the computed and observed vibrational term values must thus be caused by imperfections in the CCSD(T) surface. A refinement of this ab initio surface by a restrained fit to experimental data allows an essentially perfect reproduction of the observed vibrational term values. Variational calculations on this refined surface provide predictions for several overtone and combination bands that have not yet been observed. Dedicated to Hermann Stoll on the occasion of his 60th birthday  相似文献   

14.
The infrared spectra (3200–30 cm−1) of gaseous and solid ethyl fluorosilane, CH3CH2SiH2F, have been recorded. Additionally, the Raman spectra (3200–30 cm−1) of the liquid and solid have been recorded and quantitative depolarization values obtained. Both the gauche and trans conformers have been identified in the fluid phases but only the gauche conformer remains in the solid. Variable temperature (−105 to −150°C) studies of the infrared spectra of the sample dissolved in liquid krypton have been carried out. From these data, the enthalpy difference has been determined to be 54±16 cm−1 (646±191 J/mol) with the gauche conformer the more stable form. This is consistent with the predictions from ab initio, MP2/6-311+G(2d,2p), calculation as well as those with smaller basis sets with full electron correlations. A complete vibrational assignment is proposed for both the trans and gauche conformers based on infrared band contours, relative intensities, depolarization values, and group frequencies, which are supported by normal-coordinate calculations utilizing the force constants from MP2/6-31G(d) ab initio calculations. Complete equilibrium geometries have been determined for both rotamers by ab initio calculations employing a variety of basis sets up to 6-311+G(2d,2p) at levels of restricted Hartree–Fock (RHF) and/or Moller Plesset to the second order (MP2) with full electron correlation. The adjusted r0 parameters have been obtained for both conformers from a combination of the previously reported rotational constants with ab initio predicted values. All results are compared to similar quantities of some corresponding molecules.  相似文献   

15.
Infrared and Raman spectra (3500-60 cm−1) of gas and/or liquid and solid 1-chloro-1-silacyclopentane (c-C4H8SiClH) have been recorded and the vibrational data indicate the presence of a single conformer with no symmetry which is consistent with the twisted form. Ab initio calculations with a variety of basis sets up to MP2(full)/aug-cc-pVTZ predict the envelope-axial and envelope-equatorial conformers are saddle points with nearly the same energies but much lower in energy than the planar conformer. Density functional theory calculations by the B3LYP method predicts slightly lower energies for the two envelope forms and considerably lower for the planar form. By utilizing the MP2(full)/6-31G(d) calculations the force constants, frequencies, infrared intensities, band contours, Raman activities, and depolarization values have been obtained to support the vibrational assignment. Estimated r0 structural parameters have been obtained from adjusted MP2(full)/6-311 + G(d, p) calculations. These experimental and theoretical results are compared to the corresponding quantities of some other five-membered rings.  相似文献   

16.
The Raman spectra (3200–100 cm−1) of epifluorohydrin, OCH2CH(CH2F), in variable solvents, as well as that of the gas have been recorded and several of the bands due to the two less stable conformers have been identified. The variable solvent studies were inconclusive on the relative conformer stabilities. The conformational energy differences and optimized geometries for all three conformers have been obtained from ab initio calculations with the 3–21G, 4–31G and 6–31G* basis sets. A normal coordinate analysis has also been performed for each conformer with a force field determined from the 3–21G basis set. Assignment of the vibrational fundamentals observed in the Raman spectra of the fluid phases is proposed based on the normal coordinate calculations. In the liquid phase, one of the conformers with a large dipole moment predominates and it appears to be the gauche-I form which is the only one found in the solid. Utilizing the three rotational constants previously reported for each conformer, along with restricted relative distances for several of the structural parameters among the conformers from ab initio calculations, r0 structural parameters for the heavy atoms have been determined.  相似文献   

17.
Infrared spectra (4000–50 cm−1) of the vapor, amorphous and crystalline solids and Raman spectra (3600–10 cm−1) of the liquid with qualitative depolarization data as well as the amorphous and crystalline solids of methylaminothiophosphoryl difluoride, CH3N(H)P(=S)F2, and three deuterated species, CD3N(H)P(=S)F2, CH3N(D)P(=S)F2, and CD3N(D)P(=S)F2, have been recorded. The spectra indicate that in the vapor, liquid and amorphous solid a small amount of a second conformer is present, whereas only one conformer remains in the low temperature crystalline phase. The near-infrared spectra of the vapor confirms the existence of two conformers in the gas phase. Asymmetric top contour simulation of the vapor shows that the trans conformer is the predominant vapor phase conformer. From a temperature study of the Raman spectrum of the liquid the enthalpy difference between the trans and near-cis conformers was determined to be 368±15 cm−1 (4.41±0.2 kJ/mol), with the trans conformer being thermodynamically preferred. Ab Initio calculations with structure optimization using the 6-31G(d) and 6-311+G(d,p) basis sets at the restricted Hartree–Fock (RHF) and/or with full electron correlation by the perturbation method to second order (MP2) support the occurrence of near-trans (5° from trans) and near-cis (20° from cis) conformers. From the RHF/6-31G(d) calculation the near-trans conformer is predicted to be the more stable form by 451 cm−1 (5.35 kJ/mol) and from the MP2/6-311+G(d,p) calculation by 387 cm−1 (4.63 kJ/mol). All of the normal modes of the near-trans rotamer have been assigned based on infrared band contours, depolarization values and group frequencies and the assignment is supported by the normal coordinate calculation utilizing harmonic force constants from the MP2/6-31G(d) ab initio calculations.  相似文献   

18.
Variable temperature (?55 to ?100 °C) studies of the infrared spectra (4,000–400 cm?1) of chlorocyclobutane, c-C4H7Cl, dissolved in liquid xenon have been carried out. The infrared spectrum (4,000–100 cm–1) of the gas has also been recorded. For this puckered ring molecule the enthalpy difference between the more stable equatorial conformer and the axial form, has been determined to be 361 ± 17 cm?1 (4.32 ± 0.20 kJ/mol). This stability order is consistent with that predicted by ab initio calculations but the ?H is much lower than the average energy value of 646 ± 73 cm?1 obtained from the MP2 ab initio calculations or 611 ± 28 cm?1 from the B3LYP density functional theory calculations. The percentage of the axial conformer present at ambient temperature is estimated to be 15 ± 1%. By utilizing previously reported microwave rotational constants for both conformers combined with ab initio MP2(full)/6–311+G(d,p) predicted structural values, adjusted r 0 parameters have been obtained. The determined heavy atom structural parameters for the equatorial conformer are: the distances C–Cl = 1.783(5), C1–C4 = 1.539(3), C4–C6 = 1.558(3) Å, and angles ∠C6C4C1 = 86.9(5), ∠C4C1C5 = 89.7(5)°, and for the axial conformer are: the distances C–Cl = 1.803(5), C1–C4 = 1.547(3), C4–C6 = 1.557(3) Å, and angles ∠C6C4C1 = 86.3(5), ∠C4C1C5 = 88.9(5) and the puckering angles for the equatorial and axial conformers are 30.7(5)° and 22.3(5)°, respectively. The conformational stabilities, harmonic force fields, infrared intensities, Raman activities, depolarization ratios and vibrational frequencies have been obtained for both conformers from MP2(full)/6-31G(d) ab initio calculations and compared to experimental values where available. The results are discussed and compared to the corresponding properties of some similar molecules.  相似文献   

19.
The microwave spectra of (methylamino)thiophosphoryl difluoride, CH(3)NHP(=S)F(2), and two deuterated species, CH(3)NDP(=S)F(2) and CD(3)NHP(=S)F(2), have been investigated in the region from 26.5 to 39.0 GHz. The rotational constants of the ground vibrational state have been determined and have been shown to be only consistent with the trans conformer (CH(3) group antiperiplanar to the P=S bond) with C(s) symmetry. The a-type R branch transitions have been assigned for the trans conformer for the three isotopomers on the basis of the rigid rotor model. Near-trans and near-cis forms without molecular planes of symmetry are predicted by all ab initio calculations with the near-trans form being more stable. However, the double-well potentials governing the interchange between the two enantiomeric near-trans as well as the two near-cis forms are too shallow to accommodate the zero-point energies of the nu(24) asymmetric torsion. Thus, the trans conformation with C(s) symmetry may be more accurate in explaining the microwave experimental data. The "adjusted" r(0) structural parameters have been obtained by systematically adjusting the ab initio MP2(full)/6-311+G(d,p) structure of the trans conformer with C(s) symmetry to fit the microwave rotational constants. The determined heavy atom distances are r(C-N) = 1.459(5), r(P-N) = 1.621(5), r(P=S) = 1.879(5), and r(P-F) = 1.550(5) A, and the heavy atom angles are angleCNP = 124.7(5) degrees , angleNPS = 118.3(5) degrees , angleNPF = 103.2(5) degrees , angleFPS = 117.0(5) degrees , and angleFPF = 94.6(5) degrees . The adjusted r(0) parameters have also been obtained for aminodifluorophosphine, H(2)NPF(2), with a slightly pyramidal -PNH(2) moiety. The results indicate that the previously reported short distance of 0.981(5) A for the N-H(o)(outer) bond from the microwave study is too short, and the adjusted r(0) value of 1.007(3) A is obtained from the combined data. Adjusted r(0) parameters are also reported for (dimethylamino)difluorophosphine, (CH(3))(2)NPF(2), with C(s) symmetry with the PNC(2) portion of the molecule being planar. The previously reported C-H distances from the electron diffraction study are too long, and the anglePNC(i) and angleC(o)NC(i) angles are also found to be in error. These results provide a reasonable explanation why the microwave and electron diffraction results differ for the structures of these latter two molecules.  相似文献   

20.
Infrared spectra (4000 to 400 cm(-1)) of the gas and variable temperature xenon solutions, and the Raman spectrum of the liquid have been recorded for cyclopropylisocyanate. The enthalpy difference has been determined to be 77 ± 8 cm(-1) (0.92 ± 0.10 kJ/mol) with the trans form more stable than the cis conformer with 59 ± 2% present at ambient temperature. By utilizing three rotational constants for each conformer, combined with structural parameters predicted from MP2(full)/6-311+G(d,p) calculations, the adjusted r(0) parameters have been obtained. Heavy atom structural parameters for the trans [cis] conformers are the following: distances (?) (C-C(2,3)) = 1.509(3) [1.509(3)], (C(2)-C(3)) = 1.523(3) [1.521(3)], (C-N) = 1.412(3) [1.411(3)], (N═C) =1.214(3) [1.212(3)], (C═O) = 1.163(3) [1.164(3)]; angles (°) ∠CCN = 116.7(5) [120.1(5)], ∠CNC = 136.3(5) [137.6(5)]. The centrifugal distortion constants have been predicted from ab initio and DFT calculations and are compared to the experimentally determined values.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号