首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Highly ordered mesoporous SiC materials were prepared by infiltrating viscous liquid preceramic polymer, allylhydridopolycarbosilane, into two types of surface modified nanoporous silica templates: mesoporous silica SBA-15 and mesocellular siliceous foam. The silica templates were subsequently etched off after pyrolysis at 1000 degrees C under nitrogen atmosphere with the resultant formation of ordered mesoporous structures. The mesoporous SiC materials, synthesized from both types of templates possessed high Brunauer-Emmett-Teller (BET) surface areas in the range of 250-260 m(2)/g with pore sizes of 3.4-3.6 nm. The ordered structures of mesoporous SiC were exact inverse replicas of their respective silica templates, as characterized by small angle X-ray diffraction (XRD), transmission electron microscope (TEM) images, and the adsorption-desorption isotherm of nitrogen.  相似文献   

2.
The study focuses on the synthesis of mesoporous silica materials using liquid crystals (LCs) formed in an aqueous mixture of cationic cetyltrimethylammonium bromide (CTAB) and anionic sodium dodecyl sulfate (SDS) as templates and tetrathoxysilane (TEOS) as precursor. For this purpose, the phase behavior and range of LC areas were determined at different temperatures, concentrations, and ratios of CTAB/SDS. It was found that LCs became denser with the increased of concentration of surfactants. The mesoporous materials were synthesized using LCs as templates at various temperatures, surfactant concentrations, and pH values. The mesoporous samples were characterized using SEM and nitrogen sorption analysis. The research results showed that the structure of synthesized samples were lamellar and their surface areas increased significantly with the increase of temperature in the temperature range of LCs, reaching about 900?m2/g at 60°C. The surfactant concentrations affect the thickness of pore wall and thereby the specific surface area of products. The specific surface area and the order of mesoporous sample increased gradually with the decrease of pH.  相似文献   

3.
Highly ordered hexagonal mesoporous silica materials (JLU-20) with uniform pore sizes have been successfully synthesized at high temperature (150-220 degrees C) by using fluorocarbon-hydrocarbon surfactant mixtures. The fluorocarbon-hydrocarbon surfactant mixtures combine the advantages of both stable fluorocarbon surfactants and ordered hydrocarbon surfactants, giving ordered and stable mixed micelles at high temperature (150-220 degrees C). Mesoporous JLU-20 shows extraordinary stability towards hydrothermal treatment (100 % steam at 800 degrees C for 2 h or boiling water for 80 h), thermal treatment (calcination at 1000 degrees C for 4 h), and toward mechanical treatment (compressed at 740 MPa). Transmission electron microscopy images of JLU-20 show well-ordered hexagonal arrays of mesopores with one-dimensional (1D) channels and further confirm that JLU-20 has a two-dimensional (2D) hexagonal (P6 mm) mesostructure. 29Si HR MAS NMR spectra of as-synthesized JLU-20 shows that JLU-20 is primarily made up of fully condensed Q4 silica units (delta=-112 ppm) with a small contribution from incompletely cross-linked Q3 (delta=-102 ppm) as deduced from the very high Q4/Q3 ratio of 6.5, indicating that the mesoporous walls of JLU-20 are fully condensed. Such unique structural features should be directly attributed to the high-temperature synthesis, which is responsible for the observed high thermal, hydrothermal, and mechanical stability of the mesoporous silica materials with well-ordered hexagonal symmetry. Furthermore, the concept of "high-temperature synthesis" is successfully extended to the preparation of three-dimensional (3D) cubic mesoporous silica materials by the assistance of a fluorocarbon surfactant as a co-template. The obtained material, designated JLU-21, has a well-ordered cubic Im3m mesostructure with fully condensed pore walls and shows unusually high hydrothermal stability, as compared with conventional cubic mesoporous silica materials such as SBA-16.  相似文献   

4.
Recently, silica nanoparticles (SNPs) have drawn widespread attention due to their applications in many emerging areas because of their tailorable morphology. During the last decade, remarkable efforts have been made on the investigations for novel processing methodologies to prepare SNPs, resulting in better control of the size, shape, porosity and significant improvements in the physio-chemical properties. A number of techniques available for preparing SNPs namely, flame spray pyrolysis, chemical vapour deposition, micro-emulsion, ball milling, sol-gel etc. have resulted, a number of publications. Among these, preparation by sol-gel has been the focus of research as the synthesis is straightforward, scalable and controllable. Therefore, this review focuses on the recent progress in the field of synthesis of SNPs exhibiting ordered mesoporous structure, their distribution pattern, morphological attributes and applications. The mesoporous silica nanoparticles (MSNPs) with good dispersion, varying morphology, narrow size distribution and homogeneous porous structure have been successfully prepared using organic and inorganic templates. The soft template assisted synthesis using surfactants for obtaining desirable shapes, pores, morphology and mechanisms proposed has been reviewed. Apart from single template, double and mixed surfactants, electrolytes, polymers etc. as templates have also been intensively discussed. The influence of reaction conditions such as temperature, pH, concentration of reagents, drying techniques, solvents, precursor, aging time etc. have also been deliberated. These MSNPs are suitable for a variety of applications viz., in the drug delivery systems, high performance liquid chromatography (HPLC), biosensors, cosmetics as well as construction materials. The applications of these SNPs have also been briefly summarized.  相似文献   

5.
Under typical dilute reactant compositions (3 ~ 5 wt% of surfactant template concentration) and conventional hydrothermal conditions for mesoporous materials synthesis, successful preparation of hierarchically macro/mesoporous silica monoliths was reported in this paper. The resultant materials were characterized by a series of techniques including powder X-ray diffraction, N2 adsorption–desorption, SEM, TEM/EDS, and Hg porosimetry. A new kind of stable and hierarchically porous pure silica monoliths was confirmed, which are featured with highly ordered mesoporous structures, rod-shaped unit particles, large specific surface area of 492 m2/g, continuous macropores of about 4.0 μm in size and high macropore volume of about 13.1 cm3/g. Moreover, using the resultant silica monoliths as hard templates, carbon monoliths have been successfully replicated, which inherit the structural characters of parent silica materials. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

6.
By utilizing surfactant aggregates as supramolecular templates, mesoporous and mesostructured silicas with highly ordered structures became available. The resulting mesoporous silicas are promising candidates to host various photo- and electro-active species along with catalytically active species, due to their large and controllable pore sizes, highly ordered pore arrangements with low dimensional geometries, and reactive surfaces. We have developed the rapid solvent evaporation method, which is a modified sol-gel process, for synthesizing the mesostructured silica-surfactant films as well as the mesoporous silica films. Supported thin films, self-standing films and bubbles of mesoporous silicas have been synthesized by the rapid solvent evaporation method. The microstructures of the films have also been successfully controlled by changing the synthetic conditions. Taking advantage of the ease of synthetic operation and the transparency and homogeneity of the resulting materials, we have been interested in the introduction of functional units into the mesostructured materials. This paper reports the synthesis of transparent films of titanium- and aluminum-containing nanoporous silicas to modify the surface properties (such as adsorptive and catalytic) of nanoporous silicas. The incorporation of Al led to the formation of cation exchange or acidic sites on the mesopore surface, as revealed by the cationic dye adsorption experiments. The photocatalytic reactions of the Ti-containing nanoporous silica films were also examined.  相似文献   

7.
Highly sensitive and selective nanosensor for labile iron pool (LIP) determination, has been designed and prepared by immobilization of Fluoresceine-Desferrioxamine (Fl-DFO), a bifunctional fluoro-siderophore probe molecule with great affinity for iron ions (pKf=30.7), into highly ordered mesoporous silica structure. Different immobilization methods of Fl-DFO molecules, such as their encapsulation in surfactant micelles used as templating agents for the synthesis of mesoporous silica, direct impregnation into the mesochannels of as-synthesized mesoporous silica and their surface anchoring by covalent binding with propylamine groups implanted by post-synthesis on the internal surface of mesochannels, have been explored. Each nanohybrid has been fully characterized by small angle XRD, TEM, SEM, solid state (29)Si and (13)C MAS NMR and N(2) adsorption-desorption. The fluorescence properties of nanohybrids obtained have been correlated with the immobilization methods, generating interesting information concerning the localization of Fl-DFO molecules in the channels of mesoporous silica. The leaching of Fl-DFO molecules from mesoporous materials has been investigated. The nanosensor prepared by surface anchoring of Fl-DFO at the internal surface of mesochannels showed high performances with no leaching effect and high sensitivity in regards to its responses to ferric ions. Its fluorescence intensity decreased as soon as first Fe(III) ions are in contact with this nanosensor. A linear relationship between the fluorescence intensity and the ferric ions concentration was observed in low micromolar range. The selectivity of this nanosensor towards other metal ions has also been tested and shown its high affinity to ferric ions. This study can allow the design of a stable, portable, simple, regenerable and cost-effective nanosensor highly sensitive and selective for iron ions with detection limits in the range of cellular LIP in cells, e.g. lower micromolar range.  相似文献   

8.
A simple and effective route has been developed for the synthesis of bimodal (3.6 and 9.4 nm) mesoporous silica materials that have two ordered interconnected pore networks. Mesostructures have been prepared through the self-assembly mechanism by using a mixture of polyoxyethylene fluoroalkyl ether and triblock copolymer as building blocks. The investigation of the R(F)(8)(EO)(9)/P123/water phase diagram shows that in the considered surfactant range of concentrations the system is micellar (L(1)). DLS measurements indicate that this micellar phase is composed of two types of micelles; the size of the first one at around 7.6 nm corresponds unambiguously to the pure fluorinated micelles. The second type of micelles at higher diameter consists of fluorinated micelles that have accommodated a weak fraction of P123 molecules. Thus, in this study the bimodal mesoporous silica is really templated by two kinds of micelles.  相似文献   

9.
A useful virus: The synthesis of a new family of mesoporous silica fibers is reported. Monodisperse filamentous bacteriophages self-assembled into highly ordered hexagonal lattices that were used as templates for the formation of silica nanostructures. Removal of the bacteriophage assembly through calcination led to the formation of mesoporous silica fibers with pore structures precisely defined by the bacteriophage assembly (see picture).  相似文献   

10.
Highly ordered mesoporous cerium oxides, composed of nanocrystalline pore walls and exhibiting high thermal stability even at 973 K, were synthesized using mesoporous silica templates with hexagonal p6mm and cubic Ia3d symmetries.  相似文献   

11.
Designing highly ordered material with nanoscale periodicity is of great significance in the field of solid state chemistry. Herein, we report the synthesis of highly ordered 2D-hexagonal mesoporous zinc-doped silica using a mixture of anionic and cationic surfactants under hydrothermal conditions. Powder XRD, N2 sorption, TEM analysis revealed highly ordered 2D-hexagonal arrangements of the pores with very good surface area (762 m2 g−1) in this Zn-rich mesoporous material. Chemical analysis shows very high loading of zinc (ca. 12.0 wt%) in the material together with retention of hexagonal pore structure. Interestingly, high temperature calcination resulted into zinc silicate phase, unlike any ZnO phase, which otherwise is expected under heat treatments. High surface area together with Zn loading in this mesoporous material has been found useful for the catalytic activity of the materials in the acid-catalyzed transesterification reactions of various esters under mild liquid phase conditions.  相似文献   

12.
Mesoporous carbons were synthesized from polyacrylonitrile (PAN) using ordered and disordered mesoporous silica templates and were characterized using transmission electron microscopy (TEM), powder X-ray diffraction, nitrogen adsorption, and thermogravimetry. The pores of the silica templates were infiltrated with carbon precursor (PAN) via polymerization of acrylonitrile from initiation sites chemically bonded to the silica surface. This polymerization method is expected to allow for a uniform filling of the template with PAN and to minimize the introduction of nontemplated PAN, thus mitigating the formation of nontemplated carbon. PAN was stabilized by heating to 573 K under air and carbonized under N2 at 1073 K. The resulting carbons exhibited high total pore volumes (1.5-1.8 cm3 g(-1)), with a primary contribution of the mesopore volume and with relatively low microporosity. The carbons synthesized using mesoporous templates with a 2-dimensional hexagonal structure (SBA-15 silica) and a face-centered cubic structure (FDU-1 silica) exhibited narrow pore size distributions (PSDs), whereas the carbon synthesized using disordered silica gel template had broader PSD. TEM showed that the SBA-15-templated carbon was composed of arrays of long, straight, or curved nanorods aligned in 2-D hexagonal arrays. The carbon replica of FDU-1 silica appeared to be composed of ordered arrays of spheres. XRD provided evidence of some degree of ordering of graphene sheets in the carbon frameworks. Elemental analysis showed that the carbons contain an appreciable amount of nitrogen. The use of our novel infiltration method and PAN as a carbon precursor allowed us to obtain ordered mesoporous carbons (OMCs) with (i) very high mesopore volume, (ii) low microporosity, (iii) low secondary mesoporosity, (iv) large pore diameter (8-12 nm), and (v) semi-graphitic framework, which represent a desirable combination of features that has not been realized before for OMCs.  相似文献   

13.
A solvent evaporation induced aggregating assembly (EIAA) method has been demonstrated for synthesis of highly ordered mesoporous silicas (OMS) in the acidic tetrahydrofuran (THF)/H(2)O mixture by using poly(ethylene oxide)-b-poly(methyl methacrylate) (PEO-b-PMMA) as the template and tetraethylorthosilicate (TEOS) as the silica precursor. During the continuous evaporation of THF (a good solvent for PEO-b-PMMA) from the reaction solution, the template molecules, together with silicate oligomers, were driven to form composite micelles in the homogeneous solution and further assemble into large particles with ordered mesostructure. The obtained ordered mesoporous silicas possess a unique crystal-like morphology with a face centered cubic (fcc) mesostructure, large pore size up to 37.0 nm, large window size (8.7 nm), high BET surface area (508 m(2)/g), and large pore volume (1.46 cm(3)/g). Because of the large accessible mesopores, uniform gold nanoparticles (ca. 4.0 nm) can be introduced into mesopores of the OMS materials using the in situ reduction method. The obtained Au/OMS materials were successfully applied to fast catalytic reduction of 4-nitrophenol in the presence of NaHB(4) as the reductant. The supported catalysts can be reused for catalytic reactions without significant decrease in catalysis performance even after 10 cycles.  相似文献   

14.
嵌段共聚物与阳离子表面活性剂混合模板合成介孔SiO_2   总被引:5,自引:0,他引:5  
马玉荣  齐利民  马季铭  程虎民 《化学学报》2003,61(10):1675-1678
利用三嵌段共聚物EO_(20)PO_(70)EO_(20)与阳离子表面活性剂CTAB作为混合 模板合成了内部孔结构与外观形貌同时受到调控的介孔氧化硅。与使用单一共聚物 模板制备的介孔氧化硅相比,在混合模板作用下得到的介孔氧化硅的孔结构有序度 降低,而孔径则随混合模板中共聚物的质量分数的降低而减小。在EO_(20)PO_(70) EO_(20)与CTAB质量比为1:1时可得到形貌完好、表面光滑的介孔氧化硅微米球,其 平均孔径为3.2nm,比表面积为972m~2/g。  相似文献   

15.
In this paper, we bring forward an effective strategy, solvothermal postsynthesis, to prepare ordered mesoporous silica materials with highly branched channels. Structural characterizations indicate that the titled mesoporous materials basically have the cubic double gyroidal (space group Ia-3d) structure with small fraction of distortions. The mesopore sizes and surface areas can be up to 8.8 nm and 540 m2/g, respectively, when microwave digestion is employed to remove the organic templates. A phase transition model is proposed, and possible explanations for the successful phase transition are elucidated. The results show that the flexible inorganic framework, high content of organic matrix, and nonpenetration of poly(ethylene oxide) segments may facilitate the structural evolution. This new synthetic strategy can also be extended to the preparation of other double gyroidal silica-based mesoporous materials, such as metal and nonmetal ions doped silica and organo-functionalized silica materials. The prepared 3D mesoporous silica can be further utilized to fabricate various ordered crystalline gyroidal metal oxide "negatives". The mesorelief "negatives" (Co3O4 and In2O3 are detailed here) prepared by impregnation and thermolysis procedures exhibit undisplaced, displaced, and uncoupled enantiomeric gyroidal subframeworks. It has been found that the amount of metal oxide precursors (hydrated metal nitrates) greatly influence the (sub)framework structure and single crystallinity of the mesorelief metal oxide particles. The single crystalline gyroidal metal oxides are ordered both at mesoscale and atomic scale. However, these orders are not commensurate with each other.  相似文献   

16.
高温水热合成路线作为合成具有超高稳定性的介孔材料越来越受到人们的重视.本文对高温水热合成有序介孔材料的发展过程作一个简单的综述,合成路线包括使用碳氟表面活性剂和碳氢表面活性剂作为复合模板,有机季铵盐与碳氢表面活性剂作为复合模板以及最近报道的采用碳氢表面活性剂作为单一模板来合成系列的有序介孔材料,其组成为二氧化硅、氧化钛硅以及聚合物等.  相似文献   

17.
Qiu H  Che S 《Chemical Society reviews》2011,40(3):1259-1268
Fabrication of chiral materials and revealing the mechanisms involved in their formation are crucial issues in scientific research. The combination of cooperative self-assembly routes and the chiral templating process favors the formation of inorganic chiral materials with highly ordered mesostructures. This tutorial review highlights the recent research on chiral mesoporous silica (CMS) of hierarchical helical constructions transcribed from organic templates. The rules and mechanisms involved in the synthesis of CMS and related materials, especially the novel expression of chirality and imprinting of helical micellar superstructure by the functional groups immobilized on the mesopore surface, provide us with a deeper insight into the chiral self-assembly process and new strategies for the design and application of chiral materials. This review is addressed to researchers and students interested in chiral chemistry, supramolecular chemistry and mesoporous materials (53 references).  相似文献   

18.
The synthesis of mesoporous silicon carbide by chemical vapor infiltration of dimethyl dichlorosilane into mesoporous silica SBA-15 and subsequent dissolution of the silica matrix with HF was investigated. The influence of the synthesis parameters of the composite material (SiC/SBA-15) on the final product (mesoporous SiC) was determined. Depending on the preparation conditions, materials with specific surface areas from 410 to 830 m2 g−1 and pore sizes between 2 and 10 nm with high mesopore volume (0.31-0.96 cm3 g−1) were prepared. Additionally, the thermal stability of mesoporous silicon carbide at 1573 K in an inert atmosphere (argon) was investigated, and compared to that of SBA-15 and ordered mesoporous carbon (CMK-1). Mesoporous SiC has a much higher thermal textural stability as compared to SBA-15, but a lower stability than ordered mesoporous carbon CMK-1.  相似文献   

19.
《中国化学快报》2021,32(12):3696-3704
Drug delivery systems (DDS) are used to deliver therapeutic drugs to improve selectivity and reduce side effects. With the development of nanotechnology, many nanocarriers have been developed and applied to drug delivery, including mesoporous silica. Mesoporous silica nanoparticles (MSNs) have attracted a lot of attention for simple synthesis, biocompatibility, high surface area and pore volume. Based on the pore system and surface modification, gated mesoporous silica nanoparticles can be designed to realize on-command drug release, which provides a new approach for selective delivery of antitumor drugs. Herein, this review mainly focuses on the “gate keepers” of mesoporous silica for drug controlled release in nearly few years (2017–2020). We summarize the mechanism of drug controlled release in gated MSNs and different gated materials: inorganic gated materials, organic gated materials, self-gated drug molecules, and biological membranes. The facing challenges and future prospects of gated MSNs are discussed rationally in the end.  相似文献   

20.
The bimodal porous structured silica materials consisting of macropores with the diameter of 5–20 μm and framework-like mesopores with the diameter of 4.7–6.0 nm were prepared using natural Manchurian ash and mango linin as macropored hard templates and P123 as mesopore soft templates, respectively. The macroporous structures of Manchurian ash and mango linin were replicated with the walls containing highly ordered mesoporous silica as well. As-synthesized dual porous silica was characterized by scanning electron microscope (SEM), powder X-ray diffraction (XRD), transmission electron microscope (TEM) and nitrogen adsorption/desorption, fourier transform IR (FTIR) spectroscopy, and thermo-gravimetric analyzer (TGA). Ibuprofen (Ibu) was employed as a model drug and the release profiles showed that the dual porous material had a sustained drug delivery capability. And such highly ordered dual pore silica materials may have potential applications for bimolecular adsorption/separation and tissue repairing.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号