首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
The present work describes radiation-induced effects of major seeds like Oryza sativa Cv-2233, Oryza sativa Cv-Shankar, Cicer arietinum Cv-local and seed-borne fungi like Alternaria sp., Aspergillus sp., Trichoderma sp. and Curvularia sp. 60Co gamma source at 25 °C emitting gamma ray at 1173 and 1332 keV energy was used for irradiation. Dose of gamma irradiation up to 3 kGy (0.12 kGy/h) was applied for exposing the seed and fungal spores. Significant depletion of the fungal population was noted with irradiation at 1–2 kGy, whereas germinating potential of the treated grain did not alter significantly. However, significant differential radiation response in delayed seed germination, colony formation of the fungal spores and their depletion of growth were noticed in a dose-dependent manner. The depletion of the fungal viability (germination) was noted within the irradiation dose range of 1–2 kGy for Alternaria sp. and Aspergillus sp., while 0.5–1 kGy for Trichoderma sp. and Curvularia sp. However, complete inhibition of all the selected fungi was observed above 2.5 kGy.  相似文献   

2.
The current interest in “minimally processed foods” has attracted the attention for combination of mild treatments to improve food safety and shelf-life extention. The present study was conducted to evaluate the combined effect of gamma irradiation and incorporation of naturally occurring antimicrobial compounds on microbial and biochemistry characteristics of ground beef. Ground beef patties (23% fat ) were purchased from a local grocery store (IGA, Laval, Que., Canada) and divided into 3 separate treatment groups: (i) control (ground beef without additive), (ii) ground beef with 0.5% (w/w) ascorbic acid, and (iii) ground beef with 0.5% ascorbic acid and coated with a protein-based coating containing selected spices. Samples were irradiated at 0, 1, 2, and 3 kGy final dose at the CIC. Samples were stored at 4°C and evaluated periodically for microbial growth, total thiobarbituric reactive substances (TBARS) and free sulfydryl content. At the end of the storage period, Enterobacteriaceae, Lactic acid bacteria, Pseudomonas and Brochothrix thermosphacta were enumerated. Regardless of the treatment group, irradiation significantly (p0.05) reduced the total aerobic plate counts (APC). Irradiation doses of 1, 2, and 3 kGy produced immediate reduction of 2, 3, and 4 log units of APCs, respectively. Also, shelf-life periods were higher for ground beef samples containing food additives. Lactic acid bacteria and Brochothrix thermosphacta were more resistant to irradiation than Enterobacteriaceae and Pseudomonas. Concentration of TBARS and free sulfydryl concentrations were stabilized during post-irradiation storage for samples containing ascorbic acid and coated with the protein-based coating containing spices.  相似文献   

3.
In this study, ionizing radiation in combination with sodium hypochlorite (NaOCl) and ultrasonication (US) was examined for its effectiveness in reducing Bacillus cereus F4810/72 spores in raw rice. We also evaluated whether the combined processing would produce synergistic effects compared to the individual treatments. The concentration of the initial B. cereus spore was approximately 2.9 log10 CFU/g. After 0.1, 0.2 and 0.3 kGy irradiation treatment, spore populations were reduced by 1.3, 1.4 and 1.6 log10 CFU/g, respectively. In the case of combined gamma irradiation and NaOCl/US treatment, the reduction was higher than those of each single treatment. The combined treatment of 0.1, 0.2 and 0.3 kGy and NaOCl (600–1000 ppm)/US (5–20 min) completely destroyed the spores in raw rice while the spores were not completely destroyed in the control treatment (0 kGy). These results indicated that it could be more effective to combine NaOCl with low dose gamma irradiation than high dose (concentration) of individual disinfection treatment to destroy B. cereus spores in food such as raw rice.  相似文献   

4.
Conventional thermal and chemical treatments used in food preservation have come under scrutiny by consumers who demand minimally processed foods free from chemical agents but microbiologically safe. As a result, antimicrobial peptides (AMPs) such as bacteriocins and nisin that are ribosomally synthesised by bacteria, more prominently by the lactic acid bacteria (LAB) have appeared as a potent alternative due to their multiple biological activities. They represent a powerful strategy to prevent the development of spore-forming microorganisms in foods. Unlike thermal methods, they are natural without an adverse impact on food organoleptic and nutritional attributes. AMPs such as nisin and bacteriocins are generally effective in eliminating the vegetative forms of spore-forming bacteria compared to the more resilient spore forms. However, in combination with other non-thermal treatments, such as high pressure, supercritical carbon dioxide, electric pulses, a synergistic effect with AMPs such as nisin exists and has been proven to be effective in the inactivation of microbial spores through the disruption of the spore structure and prevention of spore outgrowth. The control of microbial spores in foods is essential in maintaining food safety and extension of shelf-life. Thus, exploration of the mechanisms of action of AMPs such as nisin is critical for their design and effective application in the food industry. This review harmonises information on the mechanisms of bacteria inactivation from published literature and the utilisation of AMPs in the control of microbial spores in food. It highlights future perspectives in research and application in food processing.  相似文献   

5.
Total aerobic bacteria in spices used in this study were determined to be 1 × 106 to 6 × 107 per gram. A study on the inactivation of microorganisms in spices showed that doses of 6–9kGy of EB (electron-beams) or γ-irradiation were required to reduce the total aerobic bacteria in many However, a little increase of resistance was observed on the inactivation of total aerobic bacteria in many spices in case of EB irradiation. These difference of radiation sensitivities between EB and γ-rays was explained by dose rate effect on oxidation damage to microorganisms from the results of radiation sensitivities of Bacillus pumilus and B. megaterium spores at dry conditions. On the other hand, these high dose rate of EB irradiation suppressed the increase of peroxide values in spices at high dose irradiation up to 80 kGy. However, components of essential oils in spices were not changed even irradiated up to 50 kGy with EB and γ-rays.  相似文献   

6.
Papain is a proteolytic enzyme that has been widely used as debridement agent for scars and wound healing treatment. However, papain presents low stability, which limits its use to extemporaneous or short shelf-life formulations. The purpose of this study was to entrap papain into a polymeric matrix in order to obtain a drug delivery system that could be used as medical device. Since these systems must be sterile, gamma radiation is an interesting option and presents advantages in relation to conventional agents: no radioactive residues are formed; the product can be sterilized inside the final packaging and has an excellent reliability. The normative reference for the establishment of the sterilizing dose determines 25 kGy as the inactivation dose for viable microorganisms. A silicone dispersion was selected to prepare membranes containing 2% (w/w) papain. Irradiated and non-irradiated membranes were simultaneously assessed in order to verify whether gamma radiation interferes with the drug-releasing profile. Results showed that irradiation does not affect significantly papain release and its activity. Therefore papain shows radioresistance in the irradiation conditions applied. In conclusion, gamma radiation can be easily used as sterilizing agent without affecting the papain release profile and its activity onto the biocompatible device is studied.  相似文献   

7.
The effect of gamma-irradiation pretreatment on some mass transfer driven operations such as dehydration, osmotic dehydration and rehydration, commonly used in food processing, was studied. Applied irradiation up to 12.0 kGy resulted in decrease in hardness of the samples, as indicated by texture analysis. The effective diffusion coefficients of water and solute determined for dehydration, osmotic dehydration as well as for rehydration using a Fickian diffusion model. The effective diffusion coefficients for water (in case of osmotic dehydration and dehydration) and solid diffusion (in case of osmotic dehydration) were found to increase exponentially with doses of gamma-irradiation (G) according to an equation of the form D=A exp(−B/G), where A and B are constants. Microstructures of irradiated-carrot samples revealed that the exposure of carrot to gamma irradiation resulted in the breakage of cell wall structure, thereby causing softening of irradiated samples and facilitating mass transfer during dehydration and osmotic dehydration. The rehydration characteristics showed that gamma-irradiated sample did not absorb as much water as control, probably due to loss of cell integrity.  相似文献   

8.
Abstract— The lethal interaction of far ultraviolet (254nm), near ultraviolet (334 and 365nm) and violet visible (405nm) radiation treatment with mild heat treatment was studied. Except at 254nm, a strong positive radiation dose-dependent interaction (synergism) was always observed. The efficiency of sensitisation to heat, as a function of dose at each wavelength, was found to be directly correlated with the dose necessary to eliminate the shoulder from the survival curve of a repair proficient strain but was apparently unrelated to the relative near-ultraviolet sensitivities of a repair deficient strain. The interaction was independent of the order of treatments. A radiation dose of 106 Jm-2 at 365nm slightly sensitised a cell population to 45°C incubation (normally non-lethal) and strongly sensitised the cells to 48°C treatment (normally 80 percent survival after 2 hours). It is proposed that in addition to DNA damage, both heat treatment and near ultraviolet treatment interfere with DNA recovery mechanisms so that the combination of the two agents inevitably leads to a strong positive interaction.  相似文献   

9.
Spores of Bacillus subtilis are approximately ten times less likely to survive UV light irradiation in a vacuum than under atmospheric conditions. Photoproduct formation was studied in spores irradiated under ultrahigh vacuum (UHV) conditions and in spores irradiated at atmospheric pressure. In addition to the "spore photoproduct" 5-thyminyl-5,6-dihydrothymine (TDHT), which is produced in response to irradiation at atmospheric pressure, two additional photoproducts, known as the cis-syn and trans-syn isomers of thymine dimer, are produced on irradiation in vacuo. The spectral efficiencies for photoproduct formation in spores are reduced under vacuum conditions compared with atmospheric conditions by a factor of 2-6, depending on the wavelength. Because formation of TDHT does not increase after irradiation in vacuo, TDHT cannot be responsible for the observed vacuum effect. Vacuum specific photoproducts may cause a synergistic response of spores to the simultaneous action of UV light and UHV. An increased quantum efficiency, destruction of repair systems and formation of irreparable lesions are postulated for the enhanced sensitivity of B. subtilis spores to UV radiation in vacuo.  相似文献   

10.
The application of gamma irradiation for pretreatment of lignocellulosic materials for their hydrolysis and to increase their digestibility for rumen animal have been reported in the literature. Gamma irradiation of corn stover in combination with sodium hydroxide for bioconversion of polysaccharide into protein by Pleurotus spp has also been reported.

In this study experiments were designed to find out whether gamma radiation could serve both as a decontaminating agent as well as hydrolytic agent of sawdust for the bioconversion of four varieties of Pleurotus spp.

Preliminary results indicate that a dose of 20kGy of gamma irradiation increase the yield of Pleurotus eous var ET-8 whilst decreasing the yield of other varieties.  相似文献   


11.
The elimination of spores from low-acid foods presents food-processing and food-safety challenges to high-pressure processing (HPP) developers as bacterial spores are extremely resistant to pressure. Therefore, the effects of pressure (400–800 MPa), temperature (35–95°C), and nisin (0–496 IU/mL) on the inactivation of Clostridium perfringens AS 64701 spores at various pressure-holding times (7.5–17.5 min) were explored. A second-order polynomal equation for HPP- and nisin-induced inactivation of C. perfringens spores was constructed with response surface methodology. Experiment results showed that the experimental values were shown to be significantly in agreement with the predicted values because the adjusted determination coefficient (R Adj2) was 0.9708 and the level of significance was P < 0.0001. The optimum process parameters (obtained by solving the quadratic polynomal equation) for a six-log cycle reduction of C. perfringens AS 64701 spores were pressure of 654 Mpa, temperature of 74°C, pressure-holding time of 13.6 min, and nisin concentration of 328 IU/mL. The validation of the model equation for predicting the optimum response values was verified effectively by ten test points that were not used in the establishment of the model. Compared with conventional HPP techniques, the main process advantages of HPP–nisin combination sterilization in the UHT milk are, lower pressure, temperature, natural preservative (nisin), and in a shorter treatment time. The synergistic inactivation of bacteria by HPP–nisin combination is a promising and natural method to increase the efficiency and safety of high-pressure pasteurization.  相似文献   

12.
Using a calorimeter equipped with 24 sample units, the heat evolution from growing Saccharomyces cerevisiae, Escherichia coli and spores of Bacillus pumilus and Bacillus stearothermophilus was detected in the form of growth thermograms. Irradiation with 60Co γ-rays affected the growth pattern, which was used for a quantitative analysis of the effect on microorganisms. Irradiation of B. pumilus and B. stearothermophilus spores led to dose-dependent delays in growth, indicating a bactericidal effect. In case of 60Co γ-irradiated S. cerevisiae, a dose-dependent reduction of the growth rate constant was observed together with the retardation in growth, indicating a combination of bactericidal and bacteriostatic effects. An equation to determine the number of survivors on the basis of the retardation in growth t and the growth rate constant μ was developed, which proved the opportunity to use the calorimetric technique in predictive microbiology.  相似文献   

13.
Measurements of radiation resistance have been carried out using two strains of Pyronema domesticum which were isolated from Chinese cotton swab gauze. A “sand-washing” technique was developed to overcome the difficulties when harvesting sclerotia spores from cultured plates and preparing spore suspensions for further use. Three types of microbial preparations, spore suspension, inoculated cotton and spore dot, were exposed to gamma radiation. A dose–survival curve method and a fraction positive method were employed to determine radiation resistance. D10 values derived from this study are within the range of 2.0–3.0 kGy. Concerns associated with the current study indicate that further work is needed.  相似文献   

14.
In vitro dielectric measurements (relative permeability and conductivity) of excised liver, kidney, cardiac muscle, spleen and eye of rabbits, were carried out at frequencies of 1–250 kHz and at room temperature. These were done before, immediately and 7 days after gamma irradiation at doses 1–5 Gy. The obtained results indicated significant increase in both relative permitivity and conductivity of tissues at higher doses immediately after irradiation. After 7 days, the changes showed some recovery, more obvious at lower doses. These changes in dielectric properties, after irradiation, may reflect the particular biological organization of each tissue and some mechanisms of radiation damage to these tissues particular to cell membrane, counter-ion polarization associated with intrinsic membrane charges and conductive transport in extracellular medium. This may help to elucidate the mechanisms of variation of dielectric properties of different tissues under the effect of radiation.  相似文献   

15.
Temperature dependencies on the radiation induced phenomena and G-value of polytetrafluoroethylene (PTFE) have been studied in a temperature range 77–653 K. It is well known that main chain scission occurs very effectively below the melting temperature of PTFE (600 K). We have found in our experiments that G-value of chain scission increases significantly with increasing irradiation temperature, until 600 K. In addition to that, we have realized that crosslinking occurs by irradiation in the molten state at 613 K (Tabata, 1992; Oshima et al., 1995; Tabata et al., 1996). In the molten state, G-value of crosslinking was found to be 0.35 (number of crosslinking/100 eV absorption), as a lower limit, and the apparent G-value of chain scission is drastically reduced. Above 633 K, radiation induced crosslinking mainly occurs, however parallel thermal depolymerization or decomposition takes place to some extent.  相似文献   

16.
Nisin is a natural additive for conservation of food, pharmaceutical, and dental products and can be used as a therapeutic agent. Nisin inhibits the outgrowth of spores, the growth of a variety of gram-positive and gram-negative bacteria. This study was performed to optimize large-scale nisin production in skimmed milk and subproducts aiming at low-costs process and stimulating its utilization. Lactococcus lactis American Type Culture Collection (ATCC) 11454 was developed in a rotary shaker (30 degrees C/36 h/100 rpm) in diluted skimmed milk and nisin activity, growth parameters, and media components were also studied. Nisin activity in growth media was expressed in arbitrary units (AU/mL) and converted to standard nisin concentration (Nisaplin, 25 mg of pure nisin is 1.0x10(6) AU/mL). Nisin activity in skimmed milk 2.27 g(total solids) was up to threefold higher than transfers in skimmed milk 4.54 g(total solids) and was up to 85-fold higher than transfers in skimmed milk 1.14 g(total solids). L. lactis was assayed in a New Brunswick fermentor with 1.5 L of diluted skimmed milk (2.27 g(total solids)) and airflow of 1.5 mL/min (30 degrees C/36/200 rpm), without pH control. In this condition nisin activity was observed after 4 h (45.07 AU/mL) and in the end of 36 h process (3312.07 AU/mL). This work shows the utilization of a low-cost growth medium (diluted skimmed milk) to nisin production with wide applications. Furthermore, milk subproducts (milk whey) can be exploited in nisin production, because in Brazil 50% of milk whey is disposed with no treatment in rivers and because of high organic matter concentrations it is considered an important pollutant. In this particular case an optimized production of an antimicrobial would be lined up with industrial disposal recycling.  相似文献   

17.
Abstract— For the same furocoumarin 8-MOP and the same total number of photoadditions, the genetic activity of DNA monoadducts and a mixture of mono- and biadducts photoinduced by the bifunctional furocoumarin 8-methoxypsoralen (8-MOP) is compared in the yeast Saccharomyces cerevisiae. In the presence of 8-MOP, 405 nm irradiation induces only monoadducts, whereas 365 nm irradiation induces mono- and biadducts (interstrand cross-links) in DNA. This is shown by heat denaturation-renaturation experiments on calf thymus DNA treated in vitro and by alkaline step elution analysis of DNA from treated yeast cells. For the same photobinding of tritiated 8-MOP to DNA in diploid yeast, about 20 times higher doses are needed with 405 nm than with 365 nm irradiation. Re-irradiation experiments reveal that part of the monoadducts induced by 8-MOP and 405 nm irradiation can be effectively converted into DNA interstrand cross-links by exposures to 365 nm radiation after washing-out of unbound 8-MOP molecules. 8-MOP and 405 nm irradiation induce per lethal hit cytoplasmic "petite" mutations in yeast as efficiently as the monofunctional furocoumarin 3-carbethoxypsoralen (3-CPs) and 365 nm irradiation, both treatments being much more efficient than 8-MOP and 365 nm irradiation. At equal survival, treatments with 8-MOP and 405 nm radiation are clearly less efficient than treatments with 8-MOP and 365 nm radiation for the induction of forward ( CAN *) and reverse ( HIS +) mutations in haploïd yeast and for the induction of mutations ( ILV +) and genetically aberrant colonies including mitotic crossing-over in diploid yeast. The two treatments are equally efficient for the induction of mitotic gene conversion. At equal photobinding of 8-MOP, the monoadducts induced by 405 nm irradiation are found less effective than the mixture of mono-and biadducts induced by 365 nm irradiation for the induction of cell killing, mutations and mitotic recombination.  相似文献   

18.
Cotton fabrics initially dyed with reactive dyes were treated with dimethylol dihydroxy ethylene urea (DMDHEU) resin in order to improve the crease recovery properties. As a comparison, the treatment with DMDHEU was carried out by the conventional thermal curing and gamma irradiation. The effect of treatments on the colour properties, crease recovery, mechanical and thermal properties was studied. It was found that the finishing of cotton fabrics with gamma irradiation affords better crease recovery values at low doses without affecting the colour intensity and the physical properties than the finishing by thermal curing. However, the finishing with higher doses of gamma radiation affects the mechanical properties of cotton fabrics. On the other hand, it was found that the thermal properties were improved with increasing dose.  相似文献   

19.
The yield increase of secondary metabolite production was examined in plant cell cultures with the use of relatively low to high doses gamma irradiation. Suspension culture of Lithospermum erythrorhizon cells was irradiated to 2, 16, and 32 Gy. The gamma irradiation significantly stimulated the shikonin biosynthesis of the cells and increased the total shikonin yields (intracellular+extracellular shikonin yields) by 400% at 16 Gy and by only 240% and 180% at 2 and 32 Gy, respectively. One of the key enzymes for the shikonin biosynthesis of cells, p-hydroxylbenzoic acid (PHB) geranyltransferase, was found to be stimulated by the gamma-radiation treatments. The activity of PHB geranyltransferase was increased at 2 and 16 Gy with a negligible change at 32 Gy. In contrast, the activity of PHB glucosyltransferase was slightly changed at all doses of gamma radiation compared with the control cells. Therefore, the increase in PHB geranyltransferase activity leads to the accumulation of secondary metabolites such as a shikonin, which may contribute to plant defense against the stresses induced by gamma irradiation.  相似文献   

20.
Gamma irradiation in combination with hot water dipping treatment was tested for maintaining storage quality and extending the shelf life of peach fruit. The matured peaches fruits (local variety no, Tex-A-6-69) were first dipped in hot water having temperature of 0, 40 and 60 °C for 60 seconds and they were exposed to 0.5 and 1.0 kGy doses of gamma radiation and stored in paper cartons under ambient (temperature 25 ± 2 °C, RH 70 %) conditions for their physico-chemical evaluations on weekly basis. The combine effect of hot water dipping treatment and irradiation for peach was study for the first time in Pakistan. The parameters studied included % weight loss, % ash content, % moisture content, total soluble solids (TSS), titratable acidity and ascorbic acid. The sensory indices studied were size, shape, color and overall acceptability. The sensory evaluation values at 0 days for the controlled peach sample were recorded for comparison. Statistical analysis was performed to find determinates of irradiation alone and in combination with hot water dipping techniques on peaches. Studies revealed that irradiation treatment in combination with hot water treatments significantly (LSD at 5 %) maintained the storage quality of peach fruit under ambient conditions. Data obtained for weight loss, moisture, shape and overall acceptability showed significant results while non-significant values were recorded for ash, TSS and size. Overall, consumers rated the acceptability of treated peaches higher than untreated peaches. This particular type of research also helps in improving one’s country export quality of fruits.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号