首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
High resolution absorption spectra of the (4, 20) band in the second negative system (A2ΠuX2Πg) of O2+ cation were measured and analyzed in the range of 11 900–12 300 cm–1 via optical heterodyne velocity modulation spectroscopy. Precise molecular constants of the levels involved were obtained by a nonlinear least-squares fitting procedure combining with our previous spectra of the (4, 19) and (6, 20) bands.  相似文献   

2.
The effect of poly-Si thickness on silicidation of Ni film was investigated by using X-ray diffraction, auger electron spectroscopy, cross-sectional scanning transmission electron microscopy, resistivity, IV, and CV measurements. The poly-Si films with various thickness of 30–200 nm were deposited by LPCVD on thermally grown 50 nm thick SiO2, followed by deposition of Ni film right after removing the native oxide. The Ni film was prepared by using atomic layer deposition with a N2-hydroxyhexafluoroisopropyl-N1 (Bis-Ni) precursor. Rapid thermal process was then applied for a formation of fully silicide (FUSI) gate at temperature of 500 °C in N2 ambient during 30 s. The resultant phase of Ni-silicide was strongly dependent on the thickness of poly-Si layer, continuously changing its phase from Ni-rich (Ni3Si2) to Si-rich (NiSi2) with increasing the thickness of the poly-Si layer, which is believed to be responsible for the observed flat band voltage shift, ΔVFB, in CV curves.  相似文献   

3.
The glasses with the composition of 37.5Li2O–(25 − x)Fe2O3xNb2O5–37.5P2O5 (mol%) (x = 5,10,15) are prepared, and it is found that the addition of Nb2O5 is effective for the glass formation in the lithium iron phosphate system. The glass–ceramics consisting of Nasicon-type Li3Fe2(PO4)3 crystals with an orthorhombic structure are developed through conventional crystallization in an electric furnace, showing electrical conductivities of 3 × 10− 6 Scm− 1 at room temperature and the activation energies of 0.48 eV (x = 5) and 0.51 eV (x = 10) for Li+ ion conduction in the temperature range of 30–200 °C. A continuous wave Nd:YAG laser (wavelength: 1064 nm) with powers of 0.14–0.30 W and a scanning speed of 10 μm/s is irradiated onto the surface of the glasses, and the formation of Li3Fe2(PO4)3 crystals is confirmed from XRD analyses and micro-Raman scattering spectra. The crystallization of the precursor glasses is considered as new route for the fabrication of Li3Fe2(PO4)3 crystals being candidates for use as electrolyte materials in lithium ion secondary batteries.  相似文献   

4.
This study deals with the results on the concentration-dependent fluorescence properties of Tb3+-doped calcium aluminosilicate (CAS) glasses of composition (100−x)(58SiO2–23CaO–5Al2O3–4MgO–10NaF in mol%)-x Tb2O3 (x=0, 0.25, 0.5, 1, 2, 4, 8, 16, 24, 32, 40 in wt%). The FTIR reflectance spectra suggested the role of dopant ions as network modifiers in the glass network. The fluorescence spectra of low Tb3+-doped glasses have revealed prominent blue and green emissions from 5D3 and 5D4 excited levels to 7Fj ground state multiplet, respectively. The glass with 2 wt% of Tb2O3 has exhibited maximum intensity of blue emission from 5D3 level, while green emission from 5D4 level has increased linearly up to 24 wt% and showed reduction in the rate of increase for higher Tb2O3 concentrations. The concentration quenching of blue emission (5D37Fj) is attributed mainly to the resonant energy transfer (RET) assisted cross-relaxation (CR) among the excited and nearest neighbour unexcited Tb3+ ions in the glass matrix. The decline in rate of increase of green emission (5D47Fj) at higher concentrations has been explained due to a possible occurrence of cooperative energy transfers leading to 4f8→4f75d transition interactions. The blue and green emission decay kinetics have been recorded to compute the excited level (5D3 and 5D4) lifetimes, which confirmed the Tb3+ concentration quenching of the blue emission in these glasses.  相似文献   

5.
Self-diffusion coefficients of Li+ DLi+, PF6 DPF6 and solvent propylene carbonate (PC) DPC in LiPF6−PC solutions were determined at 298 K by the pulse gradient spin echo (PGSE) NMR technique over the salt concentration range of 0.1–3.0 M (M = mol dm– 3). The order of the diffusion coefficients was found to be DLi+ < DPF6 < DPC over the concentration range examined, and they were monotonically decreased with increasing the salt concentration. Haven ratio Λ/ΛNMR, where Λ and ΛNMR represent the ionic conductivity measured electrochemically and that estimated via the Nernst-Einstein equation using the diffusion coefficient, respectively, was evaluated as the measure of the ion–ion interaction in the LiPF6–PC solutions. Though Λ/ΛNMR values for LiPF6-solutions decrease with increasing the salt concentration, they were greater than those for LiBF4–PC solutions over the whole concentration range examined, which indicates that the ion pair formation ability of PF6 ion is weaker than that of the BF4 ion. The smaller value of the ionic conductivity for the highly concentrated LiPF6–PC solution (above 2.0 M) than that of the LiBF4-solutions can be attributed to the more rapidly increased viscosity relative to the LiBF4-solution. Classic molecular dynamics (MD) simulations for the respective LiPF6 and LiBF4-solution of 0.5 and 1.0 M were also carried out based on the effective pair potentials. Diffusion coefficients, ionic conductivity and Haven ratio for these solutions were calculated from MD trajectories, and they qualitatively agree with those evaluated by experiments. Pair correlation functions gLiO(r) (for Li+–O (PC) pair) and gLiPF6(r) (for Li+–PF6 pair) or gLiBF4(r) (for Li+–BF4 pair) revealed that the lithium ion weakly forms the contact ion pairs with PF6, whilst strongly with BF4, which supports the present experimental results. Moreover, the simulation results show that both anions in the contact ion pairs predominantly take the monodentate form, which is in contrast to the multidentate coordination predicted by ab initio calculation in gas phase.  相似文献   

6.
The experimental measurements of density, viscosity and ultrasonic velocity of aqueous glycerol solutions were carried out as functions of concentration (0.1 ≤ m [mol kg− 1] ≤ 1.0) and temperature (303.15 ≤ T [K] ≤323.15). The isentropic compressibility (βs), acoustic impedance (Z), hydration number (Hn), intermolecular free length (Lf), classical sound absorption (α/f2)class and shear relaxation time (τ) were calculated by using the measured data. These parameters have been interpreted in terms of solute–solvent interactions. The quantum chemical calculations were performed to study the hydrogen bonding in interacting complex formed between glycerol and water molecules. Computations have been done by using Density Functional Theory (DFT) method at B3LYP/6–31 + g(d) level of theory to study the equilibrium structure of glycerol, glycerol–water interacting complex and vibrational frequencies. The solution phase study was carried out using Onsager's reaction field model in water solvent. The computed vibrational frequencies are in good agreement with the main features of the experimental spectrum when four water molecules are considered explicitly with glycerol. The interaction energy (Etotal), hydrogen bond lengths and dipole moment (µm) of the interacting complex are also presented and discussed with in the light of solute–solvent interactions.  相似文献   

7.
The reactivity of the (0 0 0 1)-Cr–Cr2O3 surface towards water was studied by means of periodic DFT + U. Several water coverages were studied, from 1.2H2O/nm2 to 14.1H2O/nm2, corresponding to ¼, 1, 2 and 3 water/Cr at the (0 0 0 1)-Cr2O3 surface, respectively. With increasing coverage, water gradually completes the coordination sphere of the surface Cr atoms from 3 (dry surface) to 4 (1.2 and 4.7H2O/nm2), 5 (9.4H2O/nm2) and 6 (14.1H2O/nm2). For all studied coverages, water replaces an O atom from the missing above plane. At coverages 1.2 and 4.7H2O/nm2, the Cr–Os (surface oxygen) acid–base character and bond directionality govern the water adsorption. The adsorption is molecular at the lowest coverage. At 4.7H2O/nm2, molecular and dissociative states are isoenergetic. The activation energy barrier between the two states being as low as 12 kJ/mol, allowing protons exchanges between the OH groups, as evidenced by ab inito molecular dynamics at room temperature. At coverages of 9.4 and 14.1H2O/nm2, 1D- (respectively, 2D-) water networks are formed. The resulting surface terminations are –Cr(OH)2 and –Cr(OH)3– like, respectively. The increased stability of those terminations as compared to the previous ones are due to the stabilization of the adsorbed phase through a H-bond network and to the increase in the Cr coordination number, stabilizing the Cr (t2g) orbitals in the valence band. An atomistic thermodynamic approach allows us to specify the temperature and water pressure domains of prevalence for each surface termination. It is found that the –Cr(OH)3-like, –Cr(OH)2 and anhydrous surfaces may be stabilized depending on (TP) conditions. Calculated energies of adsorption and OH frequencies are in good agreement with published experimental data and support the full hydroxylation model, where the Cr achieves a 6-fold coordination, at saturation.  相似文献   

8.
Based on calculations by the CNDO/S method, data on the excited molecular states of even parity of the magnesium complexes of porphin (P), tetraazaporphin (TAP), tetrabenzoporphin (TBP), and phthalocyanine (Phc) are obtained. It is only in MgP that the first excited g-state 11 B 2g (29,000 cm–1) is located 300 cm–1 higher than the B level (28,700 cm–1). In MgTBP, the two states 11 B 1g (24,700 cm–1) and 11 B 2g (25,500 cm–1) are found to be near the B level (27,500 cm–1), while the states 11 B 2g (25,500 cm–1) in MgTAP and 11 B 2g (21,000 cm–1) and 11 B 1g (23,100 cm–1) in MgPhc are located much lower than the B level; the energy of the latter is 31,900 and 32,400 cm–1 in MgTAP and MgPhc respectively. The results obtained are in good agreement with experimental data on two-photon absorption: in the zinc complex of tetraphenylporphin (TPhP), the g-state is detected in the region of the B level, while in ZnPhc, two bands at 20,400 and 21,700 cm–1 show up.  相似文献   

9.
The donor–acceptor functionalized molecule, bis(4-(2-(3,3-dicyanomethylene-5,5-dimethyl-1-cyclohexylidene)vinyl)phenyl)(1-naphthyl)amine (DPN-4CN), with symmetrical structure, was investigated for its application in optoelectronic devices. Red organic light-emitting diodes (OLEDs) were fabricated by doping DPN-4CN in tris(8-hydroxyquinolino) aluminum (Alq3) as red emitters, with a structure of ITO/NPB/Alq3:DPN-4CN/BCP/Alq3/LiF/Al. The device with a doping concentration of 2.5 wt% showed pure red emission with λmax at 654 nm and CIE coordinates of (0.62, 0.36), a high brightness of 5080 cd m−2 at a driving voltage of 12 V, a current efficiency of 2.14 cd A−1 and an external quantum efficiency of 1.07% at a current density of 20 mA cm−2. The current efficiencies and CIE coordinates of the device were almost constant over a current density from 1 to 200 mA cm−2.  相似文献   

10.
A novel synthetic process for producing aromatic polycarbonate (PC) nanoparticles using supercritical CO2 was developed. The objective of the present research work was to synthesize high molecular weight PC nanoparticles using transesterification between bisphenol-A (BPA) and diphenyl carbonate (DPC) in supercritical CO2 which is an excellent plasticizing agent and a good solvent for phenol, a by-product of the reaction. Poly(propylene oxide)–poly(ethylene oxide)–poly(propylene oxide) tri-block copolymer with CO2-phobic anchor and CO2-philic tail group was used as a stabilizer for the preparation of stable dispersions of BPA–DPC mixture in a CO2 continuous phase. As the reaction was proceeding, phenol formed from the reaction was dissolved and diffused into supercritical CO2 phase. The PC nanoparticles were isolated by simple venting of the supercritical CO2 from the reactor. Spherical morphology of PC particles was confirmed by scanning electron microscopy. Particle size and morphology of PC particles were modified upon variation of the process conditions. The resulting PC particles with a nano-size of 30–140nm have a high molecular weight (M w) of 3.1×105 (g/mol).  相似文献   

11.
The magnetic properties of 25SiO2–50CaO–15P2O5–(10−x)Fe2O3xZnO (where x=0, 2, 5 mol%) glass and glass-ceramics have been studied. These glasses are prepared by melt quench technique and heat treated at 800 °C for 6 h. Electron Spectroscopy for Chemical Analysis (ESCA) revealed that the fraction of non-bridging oxygen decreases with the increase in zinc oxide content. Evolution of crystalline phases in glass-ceramics has been studied by X-ray diffraction (XRD). The microstructure as seen by scanning electron microscopy (SEM) exhibits formation of nanosize particles. Effect of controlled heat treatment on magnetic properties was studied by means of a Superconducting Quantum Interference Device (SQUID) magnetometer. Mössbauer spectroscopy at room temperature was also carried out to determine the state of iron ions in glasses and glass-ceramics. Isomer shift values of the glasses suggest that Fe3+ and Fe2+ are in tetrahedral coordination. The analysis of the glass without ZnO shows about 58 wt% of total iron ions is in the Fe3+ state. The samples on heat treatment show improved magnetic properties due to the formation of magnetic nanoparticles. Magnetic studies revealed the relaxation of magnetic particles and the increase in saturation magnetization with addition of 2 mol% ZnO. Increase in ZnO content results in decrease in the strength of dipolar interactions.  相似文献   

12.
This study addresses the optimization of rf magnetron-sputtered hydrogenated ZnO:Al (HAZO) films as front contacts in microcrystalline silicon solar cells. The front contact of a solar cell has to be highly conductive and highly transparent to visible and infrared radiation. Furthermore, it has to scatter the incident light efficiently in order for the light to be effectively trapped in the underlying silicon layers. In this research, HAZO films were rf-magnetron-sputtered on glass substrates from a ceramic (98 wt% ZnO, 2 wt% Al2O3) target. Various compositions of AZO films on glass substrates were prepared by changing the H2/(Ar + H2) ratio of the sputtering gas. The resulting smooth films exhibited high transparencies (T  85% for visible light including all reflection losses) and excellent electrical properties (ρ = 2.7 × 10−4 Ω · cm). Depending on their structural properties, these films developed different surface textures upon post-deposition etching using diluted hydrochloric acid. The light-scattering properties of these films could be controlled simply by varying the etching time. Moreover, the electrical properties of the films were not affected by the etching process. Therefore, within certain limits, it is possible to optimize the electro-optical and light-scattering properties separately. The microcrystalline silicon (μc-Si:H)-based p–i–n solar cells prepared using these new texture-etched AZO:H substrates showed high quantum efficiencies in the long wavelength range, thereby demonstrating effective light trapping. Using the optimum AZO:H thin-film textured surface, we achieved a p–i–n μc-Si solar cell efficiency of 7.78%.  相似文献   

13.
Effects of ZnO addition on electrical properties and low-temperature sintering of BiFeO3-modified Pb(Zr,Ti)O3–Pb(Fe2/3W1/3)O3–Pb(Mn1/3Nb2/3)O3 were investigated. The investigations revealed that the sintering temperature can be decreased to 950 °C, and the favorable properties were obtained with 0.10 wt% ZnO added ceramics. The electrical properties were as follows: d33 = 313 pC/N, Kp = 0.56, tan δ = 0.0053, εr = 1407 and Tc = 295 °C, which showed that this system was a promising material for the multilayer devices application.  相似文献   

14.
We have successfully consolidated hydrogenation–disproportionation–desorption–recombination (HDDR) processed Nd–Fe–Co–Zr–B–Ga powder by spark plasma sintering (SPS). The field compacted samples were sintered at different temperatures (TS) from 550 to 600 °C with compressive pressure of 80 MPa for 20 min. Microstructural investigations by transmission electron microscopy indicated that the sintered specimen exhibits Nd2Fe14B grains of ~300 nm with Nd-rich grain boundary phase. The optimum magnetic properties of Br: 1.22 T, Hc: 928 kA/m, BHc: 600 kA/m, (BH)max: 210 kJ/m3 were obtained in the sample sintered at 550 °C. The strategy for further improving the coercivity and remanence is discussed based on the microstructure-property relationships.  相似文献   

15.
Studies on the acid-base properties and solubility of a polyammonium polyelectrolyte (chitosan) with different molecular weights (MW 310 and 50 kDa), were performed at T = 25 °C, in the pH range 2.5–7. The protonation of chitosan was investigated by potentiometry ([H+]-glass electrode) in NaCl, NaNO3 and mixed NaNO3 + Na2SO4 ionic media, at different ionic strengths. Protonation constants were calculated as a function of dissociation degree α by means of two different models, namely, a simple linear model and the modified Henderson–Hasselbalch equation. Experimental data were also fitted using a model independent of α (Diprotic-like model), according to which the acid-base properties can be simply described by two protonation constants in all the acidic pH range. The dependence on ionic strength of protonation constants in NaCl aqueous solution was modelled by Specific ion Interaction Theory (SIT). The ion pair formation between protonated chitosan and Cl, NO3 and SO42− was also considered, and the relative formation constants are reported.Solubility investigations were performed in NaCl aqueous solutions in a wide range of ionic strength (0.1 < I/mol L− 1 < 3.0), with the aim to determine the activity coefficients of neutral species and the Setschenow coefficient of chitosan 310 kDa.  相似文献   

16.
Densities and viscosities have been measured as a function of composition for the binary liquid mixture of diethylene glycol monomethyl ether CH3O(CH2)2O(CH2)2OH + water at T = (293.15, 303.15, 313.15, 323.15, 333.15) K under atmospheric pressure. Densities were determined using a capillary pycnometer. Viscosities were measured with Ubbelohde capillary viscometer. From the experimental data, the excess molar volumes VE, and viscosity deviations δη, and the excess energies of activation for viscous flow ΔG*E were calculated. These data have been correlated by the Redlich–Kister type equations to obtain their coefficients and standard deviations. The results suggest that molecular interaction between diethylene glycol monomethyl ether and water is strong.  相似文献   

17.
In this study, Cu (II) complex/n-Si structure has been fabricated by forming a thin organic Cu (II) complex film on n-Si wafer. It has been seen that the structure has clearly shown the rectifying behaviour and can be evaluated as a Schottky diode. The contact parameters of the diode such as the barrier height and the ideality factor have been calculated using several methods proposed by different authors from current–voltage (IV) characteristics of the device. The calculated barrier height and ideality factor values from different methods have shown the consistency of the approaches. The obtained ideality factor which is greater than unity refers the deviation from ideal diode characteristics. This deviation can be attributed to the native interfacial layer in the organic/inorganic interface and the high series resistance of the diode. In addition, the energy distribution of the interface state density (Nss) in the semiconductor band gap at Cu (II) complex/n-Si interface obtained from IV characteristics range from 2.15 × 1013 cm−2 eV−1 at (Ec  0.66) eV to 5.56 × 1012 cm−2 eV−1 at (Ec  0.84) eV.  相似文献   

18.
Interactions between anaerobic biofilms and heavy metals such as iron, cobalt or nickel are largely unknown. Magnetic resonance imaging (MRI) is a non-invasive method that allows in situ studies of metal transport within biofilm matrixes. The present study investigates quantitatively the penetration of iron (1.75 mM) bound to ethylenediaminetetraacetate (EDTA) into the methanogenic granules (spherical biofilm). A spatial resolution of 109 × 109 × 218 μm3 and a temporal resolution of 11 min are achieved with 3D Turbo Spin Echo (TSE) measurements. The longitudinal relaxivity, i.e. the slope the dependence of the relaxation rate (1/T1) on the concentration of paramagnetic metal ions, was used to measure temporal changes in iron concentration in the methanogenic granules. It took up to 300 min for the iron–EDTA complex ([FeEDTA]2−) to penetrate into the methanogenic granules (3–4 mm in diameter). The diffusion was equally fast in all directions with irregularities such as diffusion-facilitating channels and diffusion-resistant zones. Despite these irregularities, the overall process could be modeled using Fick’s equations for diffusion in a sphere, because immobilization of [FeEDTA]2− in the granular matrix (or the presence of a reactive barrier) was not observed. The effective diffusion coefficient (Dejf) of [FeEDTA]2− was found to be 2.8 × 10−11 m2 s−1, i.e. approximately 4% of Dejf of [FeEDTA]2− in water. The Fickian model did not correspond to the processes taking place in the core of the granule (3–5% of the total volume of the granule), where up to 25% over-saturation by iron (compare to the concentration in the bulk solution) occurred.  相似文献   

19.
The far-infrared spectrum of acrolein, CH2CHCHO, is studied in the 100–360 cm−1 region using continuum radiation from a synchrotron source. The combination of a very high resolution spectrometer, a long absorption path, and a low sample pressure, yields observed line widths of less than 0.0008 cm−1. Observation of the ν18 (157.9 cm−1), and ν13 (323.8 cm−1) fundamental bands, together with six hot bands in the same regions, gives information on eight low-lying vibrational states of the molecule, including the Fermi and Coriolis interactions among them. Combining the present assignments with previous data on the ν12 (564.34 cm−1) and ν17 (593.08 cm−1) fundamental bands, all ten excited vibrational levels below 700 cm−1 are analyzed in terms of one 1-state fit, two 2-state fits, and one 5-state fit.  相似文献   

20.
The applicability, reliability, and repeatability of 29Si MAS NMR for determination of the quantities of alite (Ca3SiO5) and belite (Ca2SiO4) in anhydrous Portland cement was investigated in detail for 11 commercial Portland cements and the results compared with phase quantifications based on powder X-ray diffraction combined with Rietveld analysis and with Taylor–Bogue calculations. The effects from paramagnetic ions (Fe3+) on the spinning sideband intensities, originating from dipolar couplings between 29Si and the spins of the paramagnetic electrons, were considered and analyzed in spectra recorded at four magnetic fields (4.7–14.1 T) and this has led to an improved quantification of alite and belite from 29Si MAS NMR spectra recorded at “high” spinning speeds of νR=12.0–13.0 kHz using 4 or 5 mm rotors. Furthermore, the impact of Fe3+ ions on the spin-lattice relaxation was studied by inversion-recovery experiments and it was found that the relaxation is overwhelmingly dominated by the Fe3+ ions incorporated as guest-ions in alite and belite rather than the Fe3+ sites present in the intimately mixed ferrite phase (Ca2AlxFe2−xO5).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号