首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A simple model was proposed for the interpretation of the non-circular form of the Rayleigh wavefronts emitted by a fast running crack in a plate. The surface deformation around the crack tip, due to the high stress concentration there, propagated as a surface wave after fracture of this zone. On the other hand, the moving singularity of the crack tip created a dynamic stress field of varying intensity with time all over the specimen. This dynamic stress field resulted in a significant change of the mechanical properties of a strain-rate dependent material and therefore it influenced the velocity of propagation of fracture-Rayleigh wavefronts. An analysis of this varying dynamic strain field explained the non-circular form of Rayleigh waves, accompanying the propagating crack. For the experimental evaluation of the K1-factor the method of dynamic caustics was used in conjunction with the high-speed photography technique.  相似文献   

2.
Dynamic photoelasticity employing a 16-spark gap Cranz-Schardin camera system was used to determine certain conditions leading to fracture arrest by a circular hole ahead of a propagating crack. Photoelastic models of 3/8×10×10-in. Homalite-100 plates with a 1/2-in. edge crack were loaded in a fixed-grip configuration and crack arrest was made possible by central holes of 1/2, 1/4, and 0.15-in. diameters. In one test of a uniformly loaded plate with a central hole of 0.15-in. diameter, the propagating crack continued through this hole. Changes in dynamic-stress-intensity factors, as the crack tip approaches the hole, as well as changes in the dynamic-stress-concentration factors at the far side of the hole were studied, and these results were compared with the corresponding static results determined by finite-element analysis. This comparison shows that the static analysis can be used to qualitatively assess the arrest capability of the hole using the maximum static-stress concept or the proposed concept of strain energy released as the crack penetrates the hole.  相似文献   

3.
Strain fields in 600 grade dual-phase steel V-notch tensile specimens, both with and without a spot weld, were measured after mode I fracture initiation. Starting with the final image of a fully developed crack, a novel reverse digital image correlation (DIC) analysis was used to determine the path that the crack followed at the onset of fracture as well as the crack tip deformation field. This gave the pixel coordinates of grid points on both sides (i.e. fracture surfaces) of the crack path in the undeformed image. Strain fields that develop in the base material regions surrounding the two fracture surfaces were subsequently measured with forward DIC analysis. Steady state values of the crack tip opening displacement (CTOD) and crack tip opening angle (CTOA), which are important fracture parameters, were measured for the base DP600 metal. Notch tip opening displacement (NTOD) and notch tip opening angle were also measured. It was found that steady state values of the CTOD and CTOA are reached within 2 mm or so of crack growth following completion of the flat-to-slant transition of the fracture surface and stabilization of the crack tunneling effect.  相似文献   

4.
基于线弹性断裂力学中I型裂纹的欧文解答,解析推导了在单向拉伸作用下无限大平板中I型裂纹尖端应变梯度场,建立了应变梯度与裂纹扩展之间的关联;基于挠曲电效应建立了电极化强度与应变梯度之间的力电耦合关系,提出了一种利用应变梯度传感器监测I型裂纹的方法,获知裂纹尖端坐标和裂纹扩展长度.本研究拟为应用应变梯度传感器对工程结构中裂纹扩展的实时监测提供初步的理论依据及方法.挠曲电感应技术在结构健康监测领域前景广阔.  相似文献   

5.
采用微机控制激光散斑干涉技术,原位研究了结构钢单边缺口预裂纹试样在3.5%Nad水溶液中,-1400mV(SCE)电位下阴极完氢6小时前后,裂尖材料形变行为的变化。同时,还对充氢与未充氢条件下光滑圆柱试样的应力-应变行为进行了对比研究,用扫描电镜观察了断口形貌。结果表明:由于氢的进入,使材料的加工硬化程度加剧,从而导致了变形困难。  相似文献   

6.
本文使用CCD像机、热电偶和红外摄像机对有裂纹平板试样,在单轴拉伸实验中对裂纹尖端附近弹-粘/塑性变形,裂纹的发生、进展,裂纹开口位移和试样表面温度进行了测量.并且用非定常热传导理论对弹-粘/塑性变形和断裂过程中的温度效应进行了解析(FEM).结果显示对于铁合金在不同的应变速率下,用非定常热传导理论解析得到的裂纹尖端附近温度分布与红外图像非常接近.  相似文献   

7.
In this paper, particular emphasis has been put on gathering information on the phenomena that take place at the crack tip of a crack propagating at 1100°F. Since the experimental program was directed toward studying crack propagation in tubing, the tests were conducted on rings.From the experimentally obtained data and from the correlation with the theoretically predicted values, the following picture emerges for the fracture behavior with full plasticity present. There is a region surrounding the crack tip where very large plastic deformations take place. This region is surrounded by a much larger region where the loading is nearly proportional and the behavior can be predicted well by the results of the deformation theory of plasticity and the theory of singularity fields. As the crack propagation initiates, there is a drastic change in the crack-tip configuration. The crack tip does not blunt and a fairly sharp crack-tip region is observed. The crack tip carries a large deformation field of a far more localized nature than that observed at the initiation of the crack growth.Paper was presented at 1978 SESA Spring Meeting held in Wichita, KS on May 14–19.  相似文献   

8.
Quasi-static fracture in four-point-bend specimens of both brittle and ductile materials was examined using a method which required only photographic access to the specimen surface. Decorrelation of laser speckle patterns was used as a means to map out two-dimensional regions of high surface strain associated with crack propagation. ASTM A515 grade 70 steel was tested, at temperatures above and below its brittle-ductile transition temperature, by double-exposure speckle photography of the area ahead of the crack tip. The regions where the two speckle patterns were uncorrelated, determined by pointwise spatial filtering of the speckle interferograms, have been observed and are related to plastic deformation of the specimen surface near the crack tip. A subsequent comparison of the decorrelation zones resulting from brittle versus ductile states showed differences as expected in both zone size and shape.  相似文献   

9.
A thermally dissipative cohesive zone model is developed for predicting the temperature increase at the tip of a crack propagating dynamically in a nominally brittle material exhibiting a cohesive-type failure such as crazing. The model assumes that fracture energy supplied to the crack tip region that is in excess of that needed for the creation of new free surfaces during crack advance is converted to heat within the cohesive zone. Bulk dissipation mechanisms, such as plasticity, are not accounted for. Several cohesive traction laws are examined, and the model is then used to make predictions of crack tip heating at various crack propagation speeds in the nominally brittle amorphous polymer PMMA, observed to fail by a crazing-type mechanism. The heating predictions are compared to experimental data where the temperature field surrounding a high speed crack in PMMA was measured. Measurements are made in real time using a multi-point high speed HgCdTe infrared radiation detector array. At the same time as temperature, simultaneous measurement of fracture energy is made by a strain gauge technique, and crack tip speed is monitored through a resistance ladder method. Material strength can be estimated through uniaxial tension tests, thus minimizing the need for parameter fitting in the stress-opening traction law. Excellent agreement between experiments and theory is found for two of the cohesive traction law temperature predictions, but only for the case where a single craze is active during the dynamic fracture of PMMA, i.e. crack tip speed up to approximately 0.2cR. For higher speed fracture where subsurface damage becomes prominent, the line dissipation model of a cohesive zone is inadequate, and a distributed damage model is needed.  相似文献   

10.
The boundary and loading conditions in many dynamic fracture test methods are frequently not well defined and, therefore, introduce a degree of uncertainty in the modeling of the experiment to extract the dynamic fracture resistance for a rapidly propagating crack. A new dynamic fracture test method is presented that overcomes many of these difficulties. In this test, a precracked, three-point bend specimen is loaded by a transmitter bar that is impacted by a striker bar fired from a gas gun. Different levels of energy can be imparted to the specimen by varying the speed and length of the striker to induce different crack growth rates in the material. The specimen is instrumented with a crack ladder gage, crack-opening displacement gage and strain gages to develop requisite data to determine toughness. Typical data for AISI 4340 steel specimen are presented. A simple quasi-dynamic analysis model for deducing the fracture toughness for a running crack from these data is presented, and the results are compared with independent measurements.  相似文献   

11.
本文采用刚塑性分析方法,研究了带裂纹有限长韧性材料梁在纯弯曲力矩作用下的动态塑性断裂过程,本文考虑了由于断裂引起的附加轴向力对断裂过程的影响,并在分析中考虑了应变率对断裂过程的影响。文章给出了断裂过程中断裂截面上弯曲力矩和轴向力随时间的变化规律,以及裂纹长度,裂纹扩展速度和加速度随时间的变化规律。  相似文献   

12.
An elastic-viscoplastic mechanics model is used to investigate asymptotically the mode Ⅲ dynamically propagating crack tip field in elastic-viscoplastic materials. The stress and strain fields at the crack tip possess the same power-law singularity under a linear-hardening condition. The singularity exponent is uniquely determined by the viscosity coefficient of the material. Numerical results indicate that the motion parameter of the crack propagating speed has little effect on the zone structure at the crack tip. The hardening coefficient dominates the structure of the crack-tip field. However, the secondary plastic zone has little influence on the field. The viscosity of the material dominates the strength of stress and strain fields at the crack tip while it does have certain influence on the crack-tip field structure. The dynamic crack-tip field degenerates into the relevant quasi-static solution when the crack moving speed is zero. The corresponding perfectly-plastic solution is recovered from the linear-hardening solution when the hardening coefficient becomes zero.  相似文献   

13.
An elastic-viscoplastic mechanics model is used to investigate asymptotically the mode Ⅲ dynamically propagating crack tip field in elastic-viscoplastic materials. The stress and strain fields at the crack tip possess the same power-law singularity under a linear-hardening condition. The singularity exponent is uniquely determined by the viscosity coefficient of the material. Numerical results indicate that the motion parameter of the crack propagating speed has little effect on the zone structure at the crack tip. The hardening coefficient dominates the structure of the crack-tip field. However, the secondary plastic zone has little influence on the field. The viscosity of the material dominates the strength of stress and strain fields at the crack tip while it does have certain influence on the crack-tip field structure. The dynamic crack-tip field degenerates into the relevant quasi-static solution when the crack moving speed is zero. The corresponding perfectly-plastic solution is recovered from the linear-hardening solution when the hardening coefficient becomes zero.  相似文献   

14.
A detailed analytical and experimental investigation is presented to understand the dynamic fracture behavior of functionally graded materials (FGMs) under mode I and mixed mode loading conditions. Crack-tip stress, strain and displacement fields for a mixed mode crack propagating at an angle from the direction of property gradation were obtained through an asymptotic analysis coupled with a displacement potential approach. This was followed by a comprehensive series of experiments to gain further insight into the behavior of propagating cracks in FGMs. Dynamic photoelasticity coupled with high-speed photography was used to obtain crack tip velocities and dynamic stress fields around the propagating cracks. Birefringent coatings were used to conduct the photoelastic study due to the opaqueness of the FGMs. Dynamic fracture experiments were performed using different specimen geometries to develop a dynamic constitutive fracture relationship between the mode I dynamic stress intensity factor (K ID ) and crack-tip velocity ( ) for FGMs with the crack moving in the direction of increasing fracture toughness. A similar -K ID relation was also obtained for matrix material (polyester) for comparison purposes. The results obtained show that crack propagation velocities in FGMs were about 80% higher than the polyester matrix. Crack arrest toughness was found to be about 10% lower than the value of local fracture toughness in FGMs.  相似文献   

15.
In ductile fracture, voids near a crack tip play an important role. From this point of view, a large deformation finite element analysis has been made to study the deformation, stress and strain, and void ratio near the crack tip under mixed mode plane strain loading conditions, employing Gurson's constitutive equation which has taken into account the effects of void nucleation and growth. The results show that: (i) one corner of the crack tip sharpens while the other corner blunts, (ii) the stress and strain distributions except for the near crack tip region, can be superimposed by normalizing distance from the crack tip by a crack tip deformation length, i.e., a steady-state solution under a mixed mode condition has been obtained, (iii) the field near a crack tip can be divided into four characteristic fields (K field, HRR field, blunted crack tip field, and damaged region), and (iv) the strain and void volume fraction become concentrated in the sharpened part of a crack tip with increasing Mode II component.  相似文献   

16.
In this paper, a multiscale model that combines both macroscopic and microscopic analyses is presented for describing the ductile fracture process of crystalline materials. In the macroscopic fracture analysis, the recently developed strain gradient plasticity theory is used to describe the fracture toughness, the shielding effects of plastic deformation on the crack growth, and the crack tip field through the use of an elastic core model. The crack tip field resulting from the macroscopic analysis using the strain gradient plasticity theory displayes the 1/2 singularity of stress within the strain gradient dominated region. In the microscopic fracture analysis, the discrete dislocation theory is used to describe the shielding effects of discrete dislocations on the crack growth. The result of the macroscopic analysis near the crack tip, i.e. a new K-field, is taken as the boundary condition for the microscopic fracture analysis. The equilibrium locations of the discrete dislocations around the crack and the shielding effects of the discrete dislocations on the crack growth at the microscale are calculated. The macroscopic fracture analysis and the microscopic fracture analysis are connected based on the elastic core model. Through a comparison of the shielding effects from plastic deformation and the discrete dislocations, the elastic core size is determined.  相似文献   

17.
In the electric-conductive material with fractures, the electric current and Joule heating will induce a local hot spot around the crack tip. By the finite element simulation, this phenomenon has been proved so that it can be applied to the fracture detection for the steel plate. As a result, the temperature variation near the fracture tip must be large enough so that the thermal sensing system can detect the hot spot at the fracture tip. It is necessary to apply large electric current on the steel plate to make obvious temperature variation. However, higher electric current will increase the driving force for the crack growth.  相似文献   

18.
The problem of vibrations of an ice sheet with a rectilinear crack on the surface of an ideal incompressible fluid of finite depth under the action of a time-periodic local load is solved analytically using the Wiener–Hopf technique. Ice cover is simulated by two thin elastic semi-infinite plates of constant thickness. The thickness of the plates may be different on the opposite sides of the crack. Various boundary conditions on the edges of the plates are considered. For the case of contact of plates of the same thickness, a solution in explicit form is obtained. The asymptotics of the deflection of the plates in the far field is studied. It is shown that in the case of contact of two plates of different thickness, predominant directions of wave propagation at an angle to the crack can be identified in the far field. In the case of contact of plates of the same thickness with free edges and with free overlap, an edge waveguide mode propagating along the crack is excited. It is shown that the edge mode propagates with maximum amplitude if the vertical wall is in contact with the plate. Examples of calculations are given.  相似文献   

19.
The asymptotic stress and strain fields near the tip of a crack which propagates dynamically in a rate-sensitive solid are obtained under anti-plane shear and plane strain conditions. The problem is formulated within the context of a small-strain theory for a solid whose mechanical behavior under high strain rates is described by an elastic-viscoplastic constitutive relation. It is shown that, if the stresses are singular at the crack-tip, the viscoplastic relation is equivalent asymptotically to an elastic-non-linear viscous relation. Furthermore, for a certain range of the material parameter which characterizes the rate-sensitivity of the material, the elastic strain-rates near the propagating crack tip are shown to have the same asymptotic radial dependence near the propagating crack-tip as the inelastic strain-rates. This determines the order of the stress singularity uniquely. The governing equations for anti-plane shear and plane strain are then derived. The numerical results for the stress and strain fields are presented for anti-plane shear and plane strain. For the present model, the results suggest that under small-scale yielding conditions, there exists a minimum velocity for stable steady crack propagation. The implication that a terminal velocity for a running crack may exist is also discussed.  相似文献   

20.
The work is concerned with the modeling and simulation of large scale ductile fracture in plate and shell structures. A meshfree method – the reproducing kernel particle method (RKPM) – is used in numerical computations in order to enact dynamic crack propagation without remeshing. There are several novelties in the present approach. First, we have developed a crack surface approximation and particle split algorithm for three-dimensional through-thickness cracks. Second, to represent evolving crack surface in 3D shell structures, a 3D parametric visibility condition algorithm is proposed, which re-constructs the local connectivity map for particles near the crack tip or crack surfaces, so that the meshfree interpolation field can represent physical material separation in the computational domain. Third, the constitutive update formulas in explicit time integration by different versions of Gurson models and the rate-dependent Johnson–Cook model are implemented for 3D computations. Finally, the performance of different Gurson-type models are investigated and compared with the experimental data of large scale in-plate tear process. Numerical simulations of crack propagation in stiffened plates and shells demonstrate that the proposed method provides an effective means to simulate ductile fracture in large scale plate/shell structures with engineering accuracy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号