首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
An intense pulsed ion beam of metal was extracted from a magnetically insulated ion diode operated in a mode of plasma prefill generated from a vacuum arc discharge, anode plasma source. With this ion diode, an intense metal-ion beam of a high melting-point metal (Ta) was obtained. A variety of operational modes appeared, depending on the amount of plasma in the diode gap at the initiation of the high-voltage pulse. The energy, current, and duration time of the ion beam were 20~100 keV, ~1 kA, and 1 μs, respectively. Measurements of ions were performed with an ion energy analyzer or a biased ion collector located at the end of a long drift tube and a Thomson parabola ion spectrometer. The Ta ions in the first to fifth states of ionization were detected accompanied by C+, O+, F+, and H+ . A Ta ion beam current of about half the total ion flux was obtained in this experiment  相似文献   

2.
Collective behavior of the cathode spots (CS) has been investigated in free burning and stabilized by axial magnetic field (AMF) vacuum arcs. Experiments carried out proved previously discovered phenomenon of CS group formation in free burning arc to be a general phenomenon for a short high-current vacuum arc. The dependency of CS group size in the developed are on arc current for different contact materials has been analyzed. Application of AMF with even relatively low intensity strongly affects on cathode processes. In short arcs, it hinders formation of the CS group and consequently reduces thermal stress applied to the electrodes. It has been revealed that high current vacuum arc under the action of AMF can exist only at current densities exceeding certain minimal value that depends on AMF intensity, contact gap, and does not depend on current itself. The dependency of this minimal (or normal) current density on AMF intensity has been studied for short and long vacuum arcs. A qualitative model of the cathode spot dynamics has also been proposed  相似文献   

3.
The motion, heating, and ionization of a plasma in a ring anode vacuum arc in an axial magnetic field are studied using a quasi-one-dimensional MHD model. The region between the cathode and anode (a current-carrying plasma jet), as well as the region behind the anode (a current-free plasma jet), is considered. It is shown that, over a long portion of a current-free plasma jet, the electron density and temperature remain high and the ion charge increases substantially due to electron-impact ionization.  相似文献   

4.
A model is formulated and evaluated for a Uniform electrical discharge sustained in vapor evaporated from an arc-heated anode. The plasma potential is positive with respect to both the cathode and anode. For a Cu anode, the anodic vapor dominates the plasma for current densities exceeding 8 kA/m2. The anode heating potential is approximately 6.5 V, and the dominant cooling mechanism is evaporation for current densities exceeding 20 kA/m2. Over the range 10 to 10000 kA/m2, the electron density increases from 8×1017 to 5×1023 m-3, while the ionization fraction rises from 0.3% to 4%. At the lower end of this current range the electrical resistivity of 4 mΩ-m is determined primarily by electron-neutral collisions, while with increasing current the resistivity decreases to 0.7 mΩ-m, with electron-ion collisions contributing an equal share. This hot-anode vacuum arc may have potential for industrial application as a macroparticle-free high-deposition-rate coating source  相似文献   

5.
S N Sen  M Gantait 《Pramana》1988,30(2):143-151
The variation of voltage, current and output power in a mercury arc plasma has been investigated in an axial magnetic field (0–1350 G) for three values of discharge current namely 3, 4 and 5 A. The voltage increases and current decreases almost linearly and the output power also increases with increase of the magnetic field. The conductivity value in magnetic field has been calculated and an analytical expression presented to represent the variation of conductivity in the magnetic field. Utilizing this expression the variation of output power with magnetic field can be explained.  相似文献   

6.
Measurements of arc voltage for semiwave currents of the amplitude up to 13 kA and frequencies 0.9 kHz and 6.0 kHz were done for CuCr electrodes whose separtion was 2 mm. The obtained data were used to determine voltage/current and voltage-time characteristics of high-current vacuum arc. They enabled to state as:
  1. The shape and values of arc voltage during a sinusoidal current semiwave flow depend on the current amplitude and frequency. As the current amplitude increases the arc voltage rises, and its shape changes from relatively low and quiet to high with considerable fluctuations of high frequency and amplitude (HAF).
  2. Arc voltage at a given current instantaneous valuei a1 depends on the current waveform before reachingi a1 . The arc voltage beyond the range of HAF occurrence, at the same instantaneous value of the sinusoidal current, is higher during the current increase than during its decrease and higher for higher current frequency.
  3. Mean arc voltage and current value at the moment of HAF onset, rise with the increase of current peak and frequency.
This article presents qualitative correlations between the measured arc voltage and an expected discharge mode in the intercontact gap.  相似文献   

7.
The interaction between the arc and the anode was experimentally studied by means of a transferred arc burning in argon with copper, iron, or steel anodes. Depending on the rate of anode cooling, a stable plasma was obtained just above the anode, established either in pure argon (strong cooling) or in a mixture of argon with metal vapor. Temperature and metal concentration fields were deduced from spectroscopic measurements. Two important results were reached: the arc radius near the anode depends on the nature of the electrode, even without anode erosion; and the presence of metal vapor leads to a cooling of the plasma. The same arc configurations were theoretically simulated by a two-dimensional model. The comparison between experimental and numerical results allows a large proportion of the observed phenomena to be interpreted, in spite of partial discrepancies between predicted and measured values. The dimension of the arc root at the anode depends on the thermal conductivity of the solid metal, whereas the cooling effect due to metal vapor in the plasma is explained by the increases of electrical conductivity and of radiative losses in the presence of the vapor  相似文献   

8.
9.
10.
This paper studies the anode region of an eroding anode with a nonstationary arc-root attachment. High-current free-burning short as well as long arcs at atmospheric pressure are investigated. A technique to study the anode region of the arc is suggested. An anode moving perpendicular to the arc axis was used for estimating parameters of the anode jets at a given moment of their development. The mechanism of current transfer in the anode region is considered on the basis of electrophysical and optical-spectroscopic investigations of the arc attachment traces and plasma parameters both of the anode jet and arc column. The anode jet was found to be of importance in the stationary arc operation. The near-anode plasma parameters depend on the effect of the cathode jet. In short arcs (La~2 mm), the plasma temperature at the anode exceeds 20000 K, while in long arcs (La >50 mm), it falls below 7000 K. At plasma temperature Ta >11000 K, the total arc current in the anode region is transferred through the arc plasma, while at lower temperatures, both the arc column and the anode jet take part in the current transfer  相似文献   

11.
A transverse vacuum arc discharge has been developed. The anode cathode distance is 4 mm, the discharge length 100 mm. Gain up to 0.55% cm?1 and a maximum laser power of 20 mW have been observed in argon at 488 nm.  相似文献   

12.
In this paper a commercial CFD (computational fluid dynamics) code FLUENT has been used and modified for the axisymmetric swirl and time-dependent simulation of an atmospheric pressure argon arc in an external axial magnetic field (AMF). The computational domain includes the arc itself and the anodic region. Numerical results demonstrate that the AMF substantially increases the tangential component of the plasma velocity. The resulting centrifugal force for the plasma rotation impels it to travel to the arc mantel and as a result, a low-pressure region appears at the arc core. With the AMF, the arc presents a hollow bell shape and correspondingly, the maximal values of the temperature, pressure and current density on the anode surface are departing from the arc centreline.  相似文献   

13.
The problem of the motion of the cathode spot of a vacuum arc electrical discharge in a magnetic field applied tangential to the cathode surface is considered. The treatment is based on concepts of the nonstationary, cyclical nature of processes occurring in the cathode spot and the key role of return electrons falling out of the near-cathode plasma back onto the cathode. Zh. Tekh. Fiz. 68, 60–64 (June 1998)  相似文献   

14.
A previous theory of the plasma sheath transition starting from the charge exchange model for ion collisions is extended to account for ionization and recombination. It is applied to the quasi-neutral boundary layer (presheath) in front of the cathode sheath of a vacuum arc. An essential potential and density difference between the sheath edge and cathodic plasma ball is found. This difference is accounted for in a unified theory of the arc cathode based on G. Ecker's (1971) existence diagram method, which indicates possible areas of arc operation in the Tcj plane, where Tc is the spot temperature and j is the current density. A numerical evaluation for Cu gives the results which are qualitatively similar to Ecker's theory. The existence areas are quantitatively enlarged and shifted to lower current densities  相似文献   

15.
Studies of nonsustained disruptive discharges (NSDDs), isolated cases of which can occur in vacuum interrupters, indicate lateral discharges between the cathode and shield, which can initiate a brief discharge between the contacts. To facilitate the study of such discharges, the sample discharges were triggered by a surface discharge induced by a spark gap, built into the side of the cathode, and observed with a high-speed film camera and image-converter camera. The tests showed a cathode spot after igniting. The emitted electrons first charge the shield negatively and then are directed toward the anode. The discharge burns at a high voltage, with current ranging from 10 to 100 A. After a period of up to 400 μs, the current demand increases abruptly; an arc discharge occurs between the contacts and discharges the capacitances near the switch. The contact gap undergoes a rapid dielectric recovery, and the restored voltage is maintained. These types of discharge were also observed with NSDDs; thus it can be assumed that the triggered discharges studied correspond to the NSDD type  相似文献   

16.
A stable intense jet with a clear-cut bright sheath has been detected on the anode of a 10-ms-long high-current vacuum arc with a current amplitude of 15 kA. The jet is adjacent to the hot spot of a molten metal on the anode surface. The primary light of the jet is emitted by neutrals. The sheath of the jet is surrounded by an ion-induced diffuse glow. The anode jet arises from interaction between the cathode and anode plasmas. Because of this, the size of the jet inversely depends on the current of the arc and the jet becomes observable only by the end of the current pulse. This object (anode jet with a bright sheath) is well reproducible when the arc is initiated between copper-chromium electrodes. In the case of pure copper electrodes, such objects occur randomly and appear at long projections of the molten metal, where heat release is hampered, and at large drops moving in the interelectrode gap. This means that the anode evaporation intensity is crucial for the appearance of bright-sheath jets.  相似文献   

17.
18.
Directed ion velocities in a vacuum arc discharge plasma are measured on the basis of a study of the ion emission current response to a rapid change of arc current. It is shown that these velocities are about 106 cm/s, are determined by the cathode material, and are almost independent of the ion charge number. Applying a magnetic field results in an increase in the directed ion velocity. As the gas pressure increases, the directed ion velocity decreases; this is the only case where the directed velocities are observed to depend on the ion charge number.  相似文献   

19.
The behavior of an electric arc in a magnetic field is studied theoretically and experimentally. It is found that the arc behavior can be governed by the ponderomotive interaction of the arc with current-carrying elements. In a nonuniform magnetic field, the behavior of the arc depends on the Hall currents and the diamagnetic properties of its plasma. It is shown that the position of the arc channel between the end faces of cylindrical electrodes can be controlled by nonuniform magnetic fields. The methods and devices considered in this paper allow one, in particular, to control arc heat sources used in the heat treatment of metals.  相似文献   

20.
A one-dimensional model of the quasi-stationary vacuum arc plasma zone is considered in terms of a three-liquid hydrodynamics approximation. It is supposed that atoms evaporated from the anode are ionized in a narrow near-anode zone, slow ions are rapidly maxwellized in the result of Coulomb collisions, ion braking length of the cathode stream may be comparable with a gap size, i.e., the cathode stream breaking is important. Outside the narrow near-electrode zones slow anode and rapid cathode ion flows are maintained, the electron thermal conductivity equalizes the electron temperature  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号