首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The fascination of research with nanometersized objects in contact with a macroscopic surface will be illustrated by two examples: mass-selected supported transition-metal clusters and C60 molecules on metallic single-crystal substrates. The preparation, mass-selection and deposition of the small particles will be described in some detail. The main experimental techniques involved in the characterization of their electronic and structural properties are photoelectron spectroscopy and scanning tunneling methods. For the transition-metal clusters the evolution of the valence band with cluster size reveals a trend to metal formation. When the tip of a Scanning Tunneling Microscope (STM) is placed above individual C60 molecules intense light emission is observed. The diameter of this emission spot is approximately 4 Å. This observation indicates the possibility of an optical spectroscopic analysis on the scale of individual molecules.  相似文献   

2.
Fullerene powder mixtures with different C60/C70 ratios have been analyzed by a variety of techniques, and results have been compared. The fullerence mixtures have been characterized as solutions in n-hexane by high-pressure liquid chromatography (HPLC) and UV-VIS spectroscopy. Thin films of fullerenes on Au(111) have been prepared from the mixtures by sublimation. The sublimation process has been studied by simultaneous thermogravimetric and differential thermal analyses. Thin fullerene films on Au(111) have been investigated by scanning tunneling microscopy (STM). The STM images show primarily two types of ballshaped molecules arranged in a lattice with hexagonal symmetry (fcc(111) face, nearest neighbour distance: 1 nm). The two species differ in diameter. STM images of films made of mixtures of different C60/C70 ratios show that C70 molecules display a larger apparent diameter (0.8 nm) and corrugation than C60 molecules (0.7 nm). The C60/C70 ratios obtained by counting the corresponding molecular species in the STM images of the thin films are compared to the C60/C70 ratios determined by HPLC on hexane solutions of the mixtures. The observed differences might be explained by different rates of sublimation for the two species. The STM images reveal film defects (vacancies and boundaries) and dynamic processes (displacement of C70 molecules and vacancies). In films prepared to have a C60 coverage of less than one monolayer, stable structural units of the C60(111) surface consisting of three or seven C60 molecules are revealed by STM. Occasionally, substructure within individual fullerene molecules is observed.  相似文献   

3.
C60/C70 crystal surfaces were imaged by atomic force microscopy under ethanol with resolution of single molecules. Spherical and elongated elliptical fullerenes can be distinguished corresponding most likely with C60, respectively C70. Determination of the maximum diameter for a large number of molecules confirms the presence of two species of fullerenes, one with 9.4 Å, the other with 11.2 Å. The measured ratio C60:C70 is 81:19 which resembles the spectroscopical data. The molecules are arranged either in hexagonal (hcp) or cubic (fcc) packing, in some areas the two arrangements alternate within a few nm. Elongated fullerenes apparently prefer the hexagonal packing.  相似文献   

4.
We have carried out a combined X-ray photoelectron spectroscopy (XPS), ultraviolet photoelectron spectroscopy(UPS), and scanning tunnelling microscopy (STM) study of the C60-Si(1 1 1) interaction where the XPS/UPS spectrometer and STM are integrated on a single UHV system. This enables a direct comparison of the XPS/UPS spectra with the STM data and eliminates any uncertainty in C60 coverage measurements. X-ray standing wave measurements and density functional theory calculations have been used to support and interpret the results of the XPS/UPS/STM experiments. Our data conclusively rule out models of C60 adsorption which involve a mixture of physisorbed and chemisorbed molecules [K. Sakamoto, et al., Phys. Rev. B 60 (1999) 2579]. Instead, we find that all molecules, up to 1 monolayer coverage, bond to the surface via Si–C bonds which are predominantly of covalent character.  相似文献   

5.
Synchrotron-based high-resolution photoemission spectroscopy (PES) and in situ scanning tunneling microscopy (STM) are used to investigate the interaction at the C60-SiC nanomesh interface during the sequential deposition and subsequent desorption of C60 molecules. A weak charge transfer occurs at the C60-nanomesh interface, involving electrons transferring from nanomesh to C60 overlayer. The interface interaction originated from the weak charge transfer at the C60-nanomesh interface is stronger than C60 intermolecular interaction (e.g., van-der-Waals force), facilitating the layer-by-layer growth for the first two layers of C60 on SiC nanomesh. The highly corrugated nanomesh surface results in an anisotropic diffusion and high diffusion barrier of C60 on top, and thereby leads to the formation of irregularly shaped C60 islands under submonolayer condition. In contrast, C60 diffusion on HOPG and Ag(1 1 1) surfaces is rather isotropic, resulting in the formation of hexagonally shaped C60 islands with smooth domain boundaries. STM results show the partial desorption of C60 molecules from the SiC nanomesh surface after annealing the 1 ML C60 sample (complete wetting layer of C60 on SiC nanomesh) at around 150 °C for 20 min. Thorough desorption of C60 molecules and full recovery of the clean SiC nanomesh are observed after annealing at around 200 °C for 20 min. In situ PES and STM experiments clearly demonstrate that C60 adsorption and desorption processes do not affect the underlying SiC nanomesh structure, revealing its thermal stability and chemical inertness to C60 molecules.  相似文献   

6.
We have performed Scanning Tunneling Microscopy (STM) in ultra-high vacuum at low temperatures (5 and 50K) of unordered and ordered C60 layers adsorbed on a Au(110) surface. STM topographs of the frozen C60 molecules reveal four symmetric patterns within single molecules, which may be associated with different orientations of the fullerenes on a highly corrugated gold substrate.  相似文献   

7.
We investigate the morphology of a pentacene (C22H14) film adsorbed on the Cu(1 1 9) vicinal surface by scanning tunnelling microscopy (STM). Thermal treatment of a thick film of molecules generates a long-range ordered structure. Series of molecular rows are alternated with areas where the molecules assume two equivalent orientations. STM data analysis suggests that the ordered structure can be described by a rippled morphology. The behaviour of the film at different annealing temperatures suggests a possible explanation of the film structure as due to an adsorbate-induced modification of the substrate.  相似文献   

8.
Spatially resolved images of an individual C60F36 fluorofullerene molecules on Si(111)-7 × 7 surface have been obtained by means of scanning tunneling microscopy/spectroscopy (STM/STS). The presence of isomers with different symmetry (T, C 3, C 1) has been revealed in STM investigation of initial adsorption stage of C60F36 on silicon surface Si(111)-(7 × 7). The adsorbed fluorofullerene molecule can occupy any adsorption site of silicon surface (corner site, faulted half, unfaulted half) that indicates for strong molecule-substrate interaction. The HOMO-LUMO gap of the adsorbed C60F36 molecules have been estimated from current image tunneling spectroscopy (CITS) and z(V) with engaged feedback measurements. The value of HOMO-LUMO gap observed experimentally was 3 eV. The C60F36 molecules adsorption on Si(111)-(7 × 7) surface was stable and kept equilibrium configuration during several hours.  相似文献   

9.
Scanning tunneling microscopy (STM) under ultra-high vacuum conditions is used to study the initial stages of adsorption of C60F18 and C60F36 fluorofullerene molecules on Si(111)-7 x 7 and Si(100)-2 x 1 surfaces. Spatially resolved STM images of individual molecules and ab initio calculations show that the fluorofullerene molecules interact with an Si surface, with the F atoms oriented toward the surface. The large electric dipole moment of the molecules induces strong polarization on the surface, but the charge transfer is weak. The presence of C60F36 isomers with different symmetry—T, C 3, and C 1—is revealed in STM images for the first time.  相似文献   

10.
Song Guo 《Surface science》2007,601(4):994-1000
Scanning tunneling microscopy (STM) is used to characterize partial monolayers of C60, C70, and C84 adsorbed on the Au(1 1 1) surface at room temperature and under ambient conditions. A high degree of structural polymorphism is observed for monolayers of each of these fullerenes. For C60, three lattice packings are observed, including a previously unreported 7 × 7 R21.8° structure that is stabilized by adjacent surface step defects. For C70, two lattice packings are observed, and analysis of molecular features in STM images allows molecular binding geometry to be determined. In one of the two observed lattice structures, C70 molecules align their long axis along the surface normal, while in the other, molecules align parallel to the surface and along a gold lattice direction. The parallel geometry is also preferred for isolated and loosely packed molecules on the surface. C84 exhibits a large number of lattice orientations and no long-range order, and likely binds incommensurately on Au(1 1 1). Time series of images of partial C70 monolayers show progressive surface modification as a result of perturbation by the STM tip; this is in contrast to the behavior of C60, where alterations in surface structure at room temperature are thermally driven.  相似文献   

11.
The results of scanning tunneling microscopy (STM) investigation of controllable growth of C60 adsorption on a Bi(0001)/Si(111) surface are reported. With the use of UHV STM, it has been shown that the most favorable sites for the initial stage of C60 adsorption are the double steps and domain boundaries. At ∼1 monolayer C60 coverage, the modulation pattern caused by the epitaxial relation between C60 and Bi unit cells has been observed. An increase in the C60 coverage up to several monolayers results in the formation of a highly crystalline molecular film. The text was submitted by the authors in English.  相似文献   

12.
13.
The adsorption of a C60 monolayer on a graphite substrate was modelled via molecular dynamics simulation covering a significant period of 160 picoseconds. The final configuration of C60s agrees closely with that observed in a scanning tunnelling microscopy (STM) experiment. Clusters of adsorbed molecules were then selected and their STM-like images were computed via the Keldysh Green function method. Presented at the VIII-th Symposium on Surface Physics, Třešt’ Castle, Czech Republic, June 28 – July 2, 1999.  相似文献   

14.
《Surface science》1996,366(2):L715-L718
Theoretical simulation of STM image of C60 molecules on Si(100)-(2 × 1) surface was performed by the DV-Xα-LCAO method. The results excellently reproduced the internal stripe pattern of the STM image of C60 observed by experiment. We confirm that it is the interaction between C60 and the Si substrate which causes this internal structure.  相似文献   

15.
Low-threshold field electron emission (FEE) is reported for periodic arrays of micro-tips produced by laser ablation of Si wafers. The best samples show emission at threshold fields as low as 4–5 V/μm for n-type Si substrates and of 1–2 V/μm for p-doped Si substrates, as measured with a flat-screen technique. Auger electron spectroscopy and X-ray electron spectroscopy reveal island-like deviation of the SiO2 stoichiometry on the tip surfaces, with lateral dimensions of less than 100 nm. Microscopic studies using a special field-emission STM show that the emission originates from well-conducting regions of sub-micron size. The experimental data suggest FEE from the tip arrays by a geometric field enhancement of both the individual micro-tip and the narrow conducting channels in the tip body. Received: 3 May 2002 / Accepted: 1 July 2002 / Published online: 28 October 2002 RID="*" ID="*"Corresponding author. Fax: +7-095/135-82-34, E-mail: shafeev@kapella.gpi.ru  相似文献   

16.
A new fullerene-containing van der Waals-compound, C60S16, has been synthesized and its crystal structure determined from single-crystal X-ray diffraction data collected at room temperature. The compound is monoclinic, space group C 2/c with a=20.867(4) Å, b=21.062(4) Å, c=10.508(2) Å, =111.25(7)° and four formula units per cell. The C60 molecules form a three-dimensional framework with one-dimensional channels along c which contain crown-shaped S8 rings. The structure has been determined by direct methods and has been refined to atomic resolution on the C60 molecule. The two independent C-C bond distances, averaged under the idealized point symmetry of the free C60 molecule, amount to 1.340(8) Å and 1.448(8) Å, corresponding to a bond alternation as large as 0.108(8) Å. The bond lengths are compared with the results of theoretical calculations of the molecular structure of C60 as well as with bond lengths from various experimental sources.  相似文献   

17.
《Surface science》1995,329(3):L613-L618
We report on scanning tunneling microscopy (STM) studies of monolayers of the diazo dye 4-[4-(N,N-dimethylamino)phenylazo]azobenzene (D2, summation formula C20H19N5) on the basal plane of highly oriented pyrolytic graphite (HOPG). Monolayers of the dye were prepared by vapour deposition or by dissolving the molecules in the liquid crystal octylcyanobiphenyl (8CB). The STM images show a double-row structure exhibiting different types of lattice defects and various domains. High-resolution images allow the identification of individual molecules and the observation of intramolecular contrast. The different orientations of the rows can be explained by a commensurate registry of the molecules with the substrate. A model for the unit cell is proposed.  相似文献   

18.
Thermionic emission from hot fullerene anions, CN -, has been measured in an electrostatic storage ring for even N values from 36 to 96. The decay is quenched by radiative cooling and hence the observations give information on the intensity of thermal radiation from fullerenes. The experiments are analysed by comparison with a simulation which includes the quantisation of photon energy and the statistics of emission. Experiments with heating of the molecules with a laser beam confirm the interpretation of the observations in terms of radiative cooling and give an independent estimate of the cooling rate for C60 -. The measured cooling rates agree in general within a factor of two with the prediction from a classical dielectric model of a thermal radiation intensity of ∼ 300 eV/s for C60 at 1 400 K, scaling approximately with the 6th power of the temperature and with the number of atoms in the molecule. Received 12 March 2001 and Received in final form 12 June 2001  相似文献   

19.
We have studied the initial stages of adsorption of C60 on the Pt (1 1 0)-(1 × 2) surface by means of STM. At room temperature, fullerene molecules adsorb in the troughs between two adjacent Pt rows of the missing row reconstruction. Mobility over the terraces is negligible, denoting strong bonding with the surface, also testified by a well-defined orientation of fullerene monomers with respect to the substrate. Upon annealing at 750 K, molecular migration towards kinks and step edges occurs, where small islands nucleation begins. A commensurate registry with the substrate is maintained by small (5-10 molecules) C60 aggregates, leading to expanded nearest-neighbour distances with respect to those found in hexagonal close packed fullerene ad-islands grown on other metallic substrates.  相似文献   

20.
High filling of single wall nanotubes (SWCNTs) with the typical exohedrally functionalized fullerene derivative of C60N-methyl-3,4-fulleropyrrolidine C60-C3NH7 is reported at the temperature of refluxing hexane. The new peapod material is characterized by STM (scanning tunneling microscopy), TEM (transmission electron microscopy) and Raman spectroscopy. Atomically resolved STM scans on SWCNT show no excessive defects or sidewall functionalization as a result of this treatment. The radial breathing mode (RBM) mode of SWCNT at 165 cm−1 becomes weaker and shifted to 169 cm−1 indicating filled nanotubes. TEM studies show bundles of SWCNT are highly filled with derivative C60-C3NH7 and form the (C60-C3NH7)n peapods. Individual pyrrolidine-type functional groups attached to the fullerene cages are unambiguously visualized by a lower-dose observation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号