首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Simultaneous oxygen and nitrogen low-energy ion implantation in silicon single crystals have been used to obtain surface layers of silicon oxynitride. In-depth concentration profiles, measured by XPS, showed all the possible tetrahedral configurations of silicon with the neighboring atoms. The most important feature of these profiles has been found to be the accumulation of a so-called Si3+ state just below the surface and about 20 nm deep. This amphoteric state has interesting properties for impurity passivation or electron trapping.  相似文献   

2.
This note reports on the noise of CMOS devices. It is shown experimentally that a weak boron threshold implant (1012 cm–3) can influence the 1/f noise levels. For wafers with threshold adjustment the p-channel noise decreases whilst the n-channel noise increases. The changes in the n/p noise ratio with/without threshold implantation are predicted using a simple model in conjunction with carrier profile simulations.  相似文献   

3.
X-ray photoelectron spectroscopy has been used to measure the valence band offset (VBO) at the GaN/Ge heterostructure interface. The VBO is directly determined to be 1.13 ±0.19 eV, according to the relationship between the conduction band offset AEc and the valence band offset △Ev:△Ec =EgGaN -EgGe - △Ev, and taking the room-temperature band-gaps as 3.4 and 0.67eV for GaN and Ge, respectively. The conduction band offset is deduced to be 1.6±0.19 eV, which indicates a type-I band alignment for GaN/Ge. Accurate determination of the valence and conduction band offsets is important for the use of GaN/Ge based devices.  相似文献   

4.
x Ga1-xAs heterojunctions grown by liquid-phase epitaxy. Interface states with hiqh concentration, Nt=3×1011 cm-2 and energy level Ec-Et=0.14 eV distributed in a box 150 Å wide at the heterointerface and acting as electron traps are observed. The possible origin could be the isolated arsenic vacancy VAs in n-GaAs. Received: 25 April 1996/Accepted: 22 January 1997  相似文献   

5.
The energy band structure of CdSnA2 and CdGeAs22 is calculated by the empirical-pseudopotential method, taking account of spin-orbital interaction. The calculated parameters – Eg = 0.25, cr = 0.05, s.o = 0.44 for CdSnAs2 and Eg = 0.55, cr = 0.20, and s.o = 0.33 for CdGeAs2 (all in eV) — are in good agreement with experiment. The conclusion drawn in a series of experimental works that there are additional minima close to the bottom of the CdSnAs2 conduction band is not confirmed in the calculation.Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Fizika, No. 12, pp. 78–82, December, 1981.  相似文献   

6.
The interfacial electronic states of an anthracene derivative (9,10-bis (methylthio) anthracene) on a SiO2/Si(100) substrate were studied using ultraviolet photoelectron spectroscopy (UPS). From the UPS measurements, the work function of the sample surface was found to decrease with increasing molecular coverage in the sub-monolayer range. It is concluded that an interfacial electronic dipole (about 0.34 eV) forms at the molecule/ SiO2 interface and decreases the effective work function.  相似文献   

7.
Chemistry, electronic structure and electrical behavior at the interfaces between copper phthalocyanine (CuPc) and Mg with a reverse formation sequence were investigated using X-ray photoemission spectroscopy (XPS), ultraviolet photoemission spectroscopy (UPS), and current-voltage (I-V) measurements. A chemical reaction occurs between CuPc and Mg irrespective of the deposition sequence. Despite having different reaction zone thicknesses, both the CuPc-on-Mg and the Mg-on-CuPc interfaces exhibit chemistry-induced gap states and identical carrier injection barriers, which are confirmed by the symmetric electrical behavior obtained from I-V characteristics of devices with a structure of Mg/CuPc/Mg. These findings contrast with those expected from physisorptive noble metal-CuPc interfaces and suggest that strong local chemical bonding is a primary factor determining molecular level alignment at reactive metal-CuPc interfaces.  相似文献   

8.
The oxidation state of Fe and Ti ions implanted in yttria stabilized zirconia (YSZ) was studied by XPS (X-ray photoelectron spectroscopy) in combination with depth profiling using Ar+ sputtering. In the as-implanted state of the sample Fe was found to be present as Fe3+, Fe2+ and as metallic Fe0. This is in agreement with earlier conversion electron Mössbauer Spectroscopy measurements. For Ti-implanted YSZ in the as-implanted state the majority of the Ti is present as Ti4+, Ti3+, and Ti2+ ions, while a part of the Zr cations is present in the divalent oxidation state (Zr2+). After oxidation in air, the Fe and Ti ions are present only in the valence three and four oxidation states, respectively.  相似文献   

9.
We studied the electronic structure of the Sr3Fe2O7 compound using X-ray photoelectron spectroscopy (XPS). The charge-transfer satellites in the Fe 2p XPS spectra were analyzed using standard cluster model calculations. The analysis indicates that Sr3Fe2O7 is in the negative charge-transfer regime, and that the ground state is dominated by the configuration (where denotes an O 2p hole in the oxygen band). These results are similar to those found in the related SrFeO3 and Sr2FeO4 compounds. The band gap of the Sr3Fe2O7 compound is split off by the relatively large value of the p-d transfer integral Tσ. The lowest lying excitations are and consequently the band gap is of the p-p type. The band gap in the Srn+1FenO3n+1 series can be understood taking into account the trend in the O 2p bandwidths.  相似文献   

10.
We present a study of the electronic properties of the interface between the well-established molecular organic semiconductor copper phthalocyanine (CuPc) and the fullerite C60 using photoelectron spectroscopy and the Kelvin-probe (KP) method. Upon deposition of CuPc on C60, we found interfacial shifts of the vacuum level indicating the formation of a dipole layer, while band bending is found to be negligible. The interface dipole of 0.5 eV measured with KP is close to the difference between the work functions of bulk CuPc and C60. No evidence for a chemical interaction at the interface is concluded from the absence of additional features in the core-level spectra at the earliest stages of deposition. The energy-level alignment diagram at the CuPc/C60 interface is derived.  相似文献   

11.
《Current Applied Physics》2014,14(2):171-175
We report valence and conduction band offset measurements in a pulsed laser deposited Ni0.07Zn0.93O/ZnO heterostructure using X-ray photoelectron spectroscopy, valence band spectroscopy and ultraviolet visible spectroscopy. Neglecting the strain effect, the valence band offset was estimated to be 0.32 eV and the conduction band offset comes out to be −0.23 eV. Ratio between conduction band and valence band offset is 0.72. Core level shifting due to Ni doping has also been explained. Magnetotransport study of Ni0.07Zn0.93O film reveals that the charge carriers might be spin polarized at the interface of the heterojunction.  相似文献   

12.
The coalescence of epitaxial silicon layers which are grown laterally over oxidized and patterned Si substrates is studied using various techniques of transmission electron microscopy (TEM). The epitaxial layers, the seam of coalescence and lattice defects formed by the coalescence are characterized. The epitaxial layer as a whole is found to be bent with respect to the substrate. Such misorientations, together with facetting of the growth fronts of the coalescing layers, may lead to the formation of solvent inclusions, dislocations and stacking faults at the seam of coalescence. However, under favourable conditions, the seam is found to be entirely defect-free.  相似文献   

13.
Charge injection from metal electrodes to organics is a subject of intense scientific investigation for organic electronics. Ballistic electron emission microscopy (BEEM) enables spectroscopy and imaging of buried interfaces with nanometer resolution. Spatial non-uniformity of carrier injection is observed for both Ag-PPP (poly-paraphenylene) and Ag-MEHPPV (poly-2-methoxy-5-2-ethyl-hexyloxy-1,4-phenylenevinylene) interfaces. BEEM current images are found to correlate only marginally with the surface topography of the Ag film.  相似文献   

14.
In this contribution, we present results of a non-destructive in-depth analysis of concentration of chemical components at buried interfaces on Ge-based CMOS by means of hard X-ray photoelectron spectroscopy (HAXPES) and low angle X-ray reflectivity (XRR). Two samples composed of a Ge/Si/SiO2/HfO2/TiN stack, with layer and interlayer thicknesses of 2500, 0.9, 0.5, 4.9, 3.4 nm and 2500, 0.7, 1, 5.8, 3 nm have been studied. The use of electrons with kinetic energies from few eV up to 15 keV enables to tune the information depth being able to analyze the desired interface in a non-destructive way. XRR enables the determination of the exact layer thickness and density. The results suggest that the Si interlayer prevents the Ge oxidation. Depth profiles of the electronic structure have been obtained for both samples by following the evolution of the photoemission signal from the Hf 2p3/2 core level as a function of the photoelectron kinetic energy. The depth profile of the electronic structure reveals the presence of a chemical shift of the Hf 2p3/2 core level, which is related to an interfacial bonding state. Our results demonstrate the excellent capability of HAXPES to study buried interfaces in a non-destructive way.  相似文献   

15.
High-resolution transmission electron microscopy (HREM) allows to study a wide range of device-relevant topics in heteroepitaxial layer structures. Quantitative HREM may be used to obtain chemical information on a near-atomic scale from interfacial transition zones. The physical background is described and demonstrated on several examples in the Al x Gal1–x As/GaAs system. The HREM contrast of antiphase boundaries in InP grown on Si was studied by image simulations and has been compared to experimental images. Silicon carbide precipitates were identified by HREM at the homoepitaxial Si/Si interface. They stem from carbon contamination prior to Si layer growth.  相似文献   

16.
In this paper, the influence of two pre-evaporation surface treatments on the electrical characteristics of n- and p-Si/Au, Cr and Ti MIS diodes are studied. A strong dependence of the barrier height on the pre-evaporation treatment is observed and is found to be independent of the metal work function. In order to explain this, it is suggested that the interfacial charges are strongly affected by the pre-evaporation treatment used.  相似文献   

17.
For Si-ZnO heterostructures, prepared by magnetron sputtering, the interface morphology is studied by XPS and UPS. ZnO films on Si(1 1 1) surfaces (H-termination and 7 × 7) were prepared by magnetron sputtering and metal organic molecular beam epitaxy (MOMBE) and are investigated in well defined deposition steps and the interface properties were studied in situ. All samples were handled in situ under ultra high vacuum (UHV) conditions. Up to five different interface phases were detected depending on ZnO preparation. Beside a SiOx film induced by the sputter process, ZnO and Zn2SiO4 phases are resolved. In addition hydrogen, appearing as ZnOHx, is found in considerable concentrations in the films.  相似文献   

18.
High-flux 1-MeV electron irradiation in a high voltage transmission electron microscope is used to study the influence of interfaces and localised stress fields on {113}-defect generation in silicon. A semi-quantitative model is presented to explain the observations, suggesting that the silicon oxide/silicon interface is a stronger sink for self-interstitials than for vacancies. It is shown that the position and the height of the maximum of the {113}-defect density strongly depends on the strength of the interface as a vacancy sink and that compressive straining of the silicon substrate slows down the diffusion of vacancies towards the interface.  相似文献   

19.
The composition and microstructure of rf sputtered 20 nm Ta2O5 on N2O or NH3 Rapid Thermal Nitrided (RTN) Si substrates have been investigated by X-ray photoelectron spectroscopy. RTN at 800 and 850 °C is effective to suppress active oxidation of Si. There is no evidence for the presence of SiO2 at Si interface. A lightly nitrided surface is established in both cases without a formation of detectable oxynitride layer at Si. A layered nature of the films is observed, with stoichiometric tantalum pentoxide at and close to the films’ surface. In the depth, the films are mixed ones whose composition depends on the nitridation ambient. N2O treatment stimulates oxidation processes during the film deposition while NH3 nitridation results to a less effective oxidation and produces Ta-silicate like film. The correlation between the composition of the interfacial regions and the nitridation gas is also discussed. The results suggest that hydrogen, as a component of nitridation ambient, plays significant role in the reactions controlling the exact composition of the deposited Ta2O5, activating reactions with nitrogen. Nitrogen related reactions likely occur with NH3 processing but do not with N2O one. The presence of nitrogen feature is not detected in N2O-samples spectra at all. In the integration perspective, preliminary RTN of Si in N2O or NH3 could be a suitable way to produce layered Ta2O5-based films with more or less presence of tantalum silicate with a trace of nitrogen, either only at the interface with Si (N2O-process) or in the whole film (NH3-process).  相似文献   

20.
In this work we present a systematic study of the local photovoltaic properties of ReS2, using a scanning tunneling microscope (STM). The tunneling junction of the STM was optically illuminated during the tunneling process. The phase sensitive detected photo-induced tunneling current (PITC) was studied as a function of wavelength and surface topography. In order to improve the performance of ReS2 solar cells, the samples were treated with NaI/I2 and EDTA solutions. Relative to the untreated sample, the EDTA-treated samples show an increase in the photo-induced tunneling current by a factor of 8–10 in the whole spectral range, the NaI/I-treated samples by 2–3. Two dimensional mapping of the PITC was performed on an atomic scale and compared to the surface topography.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号