首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The dissociative sticking coefficient for C2H6 on Pt(111) has been measured as a function of both gas temperature (Tg) and surface temperature (Ts) using effusive molecular beam and angle-integrated ambient gas dosing methods. A microcanonical unimolecular rate theory (MURT) model of the reactive system is used to extract transition state properties from the data as well as to compare our data directly with supersonic molecular beam and thermal equilibrium sticking measurements. We report for the first time the threshold energy for dissociation, E0 = 26.5 +/- 3 kJ mol(-1). This value is only weakly dependent on the other two parameters of the model. A strong surface temperature dependence in the initial sticking coefficient is observed; however, the relatively weak dependence on gas temperature indicates some combination of the following (i) not all molecular excitations are contributing equally to the enhancement of sticking, (ii) that strong entropic effects in the dissociative transition state are leading to unusually high vibrational frequencies in the transition state, and (iii) energy transfer from gas-phase rovibrational modes to the surface is surprisingly efficient. In other words, it appears that vibrational mode-specific behavior and/or molecular rotations may play stronger roles in the dissociative adsorption of C2H6 than they do for CH4. The MURT with an optimized parameter set provides for a predictive understanding of the kinetics of this C-H bond activation reaction, that is, it allows us to predict the dissociative sticking coefficient of C2H6 on Pt(111) for any combination of Ts and Tg even if the two are not equal to one another.  相似文献   

2.
A 3-parameter local hot spot model of gas-surface reactivity is employed to analyze and predict dissociative sticking coefficients for CH(4) incident on Ir(111) under varied nonequilibrium and equilibrium conditions. One Ir surface oscillator and the molecular vibrations, rotations, and translational energy directed along the surface normal are treated as active degrees of freedom in the 14 dimensional microcanonical kinetics. The threshold energy for CH(4) dissociative chemisorption on Ir(111) derived from modeling molecular beam experiments is E(0) = 39 kJ/mol. Over more than 4 orders of magnitude of variation in sticking, the average relative discrepancy between the beam and theoretically derived sticking coefficients is 88%. The experimentally observed enhancement in dissociative sticking as beam translational energies decrease below approximately 10 kJ/mol is consistent with a parallel dynamical trapping/energy transfer channel that likely fails to completely thermalize the molecules to the surface temperature. This trapping-mediated sticking, indicative of specific energy transfer pathways from the surface under nonequilibrium conditions, should be a minor contributor to the overall dissociative sticking at thermal equilibrium. Surprisingly, the CH(4) dissociative sticking coefficient predicted for Ir(111) surfaces at thermal equilibrium, based on the molecular beam experiments, is roughly 4 orders of magnitude higher than recent measurements on supported nanoscale Ir catalysts at 1 bar pressure, which suggests that substantial improvements in catalyst turnover rates may be possible.  相似文献   

3.
Effusive molecular beam measurements of angle-resolved thermal dissociative sticking coefficients for CH(4) impinging on a Pt(111) surface, at a temperature of 700 K, are reported and compared to theoretical predictions. The reactivity falls off steeply as the molecular angle of incidence increases away from the surface normal. Successful modeling of the thermal dissociative sticking behavior, consistent with existent CH(4) supersonic molecular beam experiments involving rotationally cold molecules, required that rotation be treated as a spectator degree of freedom.  相似文献   

4.
A microcanonical unimolecular rate theory (MURT) model incorporating quantized surface vibrations and Rice-Ramsperger-Kassel-Marcus rate constants is applied to a benchmark system for gas-surface reaction dynamics, the activated dissociative chemisorption and associative desorption of hydrogen on Cu(111). Both molecular translation parallel to the surface and rotation are treated as spectator degrees of freedom. MURT analysis of diverse experiments indicates that one surface oscillator participates in the dissociative transition state and that the threshold energy for H2 dissociation on Cu(111) is E0 = 62 kJ/mol. The spectator approximation for rotation holds well at thermally accessible rotational energies (i.e., for Er less than approximately 40 kJ/mol). Over the temperature range from 300 to 1000 K, the calculated thermal dissociative sticking coefficient is ST = S0 exp(-Ea/kBT) where S0 = 1.57 and Ea = 62.9 kJ/mol. The sigmoid shape of rovibrational eigenstate-resolved dissociative sticking coefficients as a function of normal translational energy is shown to derive from an averaging of the microcanonical sticking coefficient, with threshold energy E0, over the thermal surface oscillator distribution of the gas-surface collision complexes. Given that H2/Cu(111) is one of the most dynamically biased of gas-surface reactive systems, the simple statistical MURT model simulates and broadly rationalizes the H2/Cu(111) reactive behavior with remarkable fidelity.  相似文献   

5.
A local hot spot model of gas-surface reactivity is used to investigate the state-resolved dynamics of methane dissociative chemisorption on Pt(111) under thermal equilibrium conditions. Three Pt surface oscillators, and the molecular vibrations, rotations, and the translational energy directed along the surface normal are treated as active degrees of freedom in the 16-dimensional microcanonical kinetics. Several energy transfer models for coupling a local hot spot to the surrounding substrate are developed and evaluated within the context of a master equation kinetics approach. Bounds on the thermal dissociative sticking coefficient based on limiting energy transfer models are derived. The three-parameter physisorbed complex microcanonical unimolecular rate theory (PC-MURT) is shown to closely approximate the thermal sticking under any realistic energy transfer model. Assuming an apparent threshold energy for CH(4) dissociative chemisorption of E(0)=0.61 eV on clean Pt(111), the PC-MURT is used to predict angle-resolved yield, translational, vibrational, and rotational distributions for the reactive methane flux at thermal equilibrium at 500 K. By detailed balance, these same distributions should be observed for the methane product from methyl radical hydrogenation at 500 K in the zero coverage limit if the methyl radicals are not subject to side reactions. Given that methyl radical hydrogenation can only be experimentally observed when the CH(3) radicals are kinetically stabilized against decomposition by coadsorbed H, the PC-MURT was used to evaluate E(0) in the high coverage limit. A high coverage value of E(0)=2.3 eV adequately reproduced the experimentally observed methane angular and translational energy distributions from thermal hydrogenation of methyl radicals. Although rigorous application of detailed balance arguments to this reactive system cannot be made because thermal decomposition of the methyl radicals competes with hydrogenation, approximate applicability of detailed balance would argue for a strong coverage dependence of E(0) with H coverage--a dependence not seen for methyl radical hydrogenation on Ru(0001), but not yet experimentally explored on Pt(111).  相似文献   

6.
The reactivity of CH(4) impinging on a Pt(111) surface was examined using a precursor-mediated microcanonical trapping model of dissociative chemisorption wherein the effects of rotational and vibrational energy could be explored. Dissociative sticking coefficients for a diverse range of non-equilibrium effusive beam, supersonic beam, and eigenstate-resolved experiments were simulated and an average relative discrepancy between theory and experiment of better than 50% was achieved by treating molecular rotations and translation parallel to the surface as spectator degrees of freedom, and introducing a dynamically-biased vibrational efficacy. The model parameters are {E(0) = 57.9 kJ mol(-1), s = 2, η(v) = 0.40} where E(0) is the apparent threshold energy for reaction, s is the number of surface oscillators participating in energy exchange within each gas-surface collision complex formed, and η(v) is the mean vibrational efficacy for reaction relative to normal translational energy which figures in the assembly of the active exchangeable energy which is available to surmount the activation barrier to dissociative chemisorption. GGA-DFT electronic structure calculations provided vibrational frequencies for the transition state for dissociative chemisorption. The asymmetry of the rotational state populations in supersonic and effusive molecular beam experiments allowed kinetic analysis to establish that taking rotation as a spectator degree of freedom is a good approximation. Surface phonons, rather than the incident molecules, are calculated to play the dominant role in supplying the energy required to overcome the activation barrier for dissociative chemisorption under the thermal equilibrium conditions relevant to high pressure catalysis. Over the temperature range 300 K ≤T≤ 1000 K, the thermal dissociative sticking coefficient is predicted to be well described by S(T) = S(0) exp(-E(a)/RT) where S(0) = 0.62 and E(a) = 62.6 kJ mol(-1).  相似文献   

7.
A three-parameter microcanonical theory of gas-surface reactivity is used to investigate the dissociative chemisorption of methane impinging on a Ni(100) surface. Assuming an apparent threshold energy for dissociative chemisorption of E(0)=65 kJ/mol, contributions to the dissociative sticking coefficient from individual methane vibrational states are calculated: (i) as a function of molecular translational energy to model nonequilibrium molecular beam experiments and (ii) as a function of temperature to model thermal equilibrium mbar pressure bulb experiments. Under fairly typical molecular beam conditions (e.g., E(t)>/=25 kJ mol(-1), T(s)>/=475 K, T(n)/=100 K the dissociative sticking is dominated by methane in vibrationally excited states, particularly those involving excitation of the nu(4) bending mode. Fractional energy uptakes f(j) defined as the fraction of the mean energy of the reacting gas-surface collision complexes that derives from specific degrees of freedom of the reactants (i.e., molecular translation, rotation, vibration, and surface) are calculated for thermal dissociative chemisorption. At 500 K, the fractional energy uptakes are calculated to be f(t)=14%, f(r)=21%, f(v)=40%, and f(s)=25%. Over the temperature range from 500 K to 1500 K relevant to thermal catalysis, the incident gas-phase molecules supply the preponderance of energy used to surmount the barrier to dissociative chemisorption, f(g)=f(t)+f(r)+f(v) approximately 75%, with the highest energy uptake always coming from the molecular vibrational degrees of freedom. The predictions of the statistical, mode-nonspecific microcanonical theory are compared to those of other dynamical theories and to recent experimental data.  相似文献   

8.
A simple picture of the hydrogen dissociation/associative desorption dynamics on Cu(111) emerges from a two-parameter, full dimensionality microcanonical unimolecular rate theory (MURT) model of the gas-surface reactivity. Vibrational frequencies for the reactive transition state were taken from density functional theory calculations of a six-dimensional potential energy surface [Hammer et al., Phys. Rev. Lett. 73, 1400 (1994)]. The two remaining parameters required by the MURT were fixed by simulation of experiments. These parameters are the dissociation threshold energy, E(0)=79 kJmol, and the number of surface oscillators involved in the localized H(2)Cu(111) collision complex, s=1. The two-parameter MURT quantitatively predicts much of the varied behavior observed for the H(2) and D(2)Cu(111) reactive systems, including the temperature-dependent associative desorption angular distributions, mean translational energies of the associatively desorbing hydrogen as a function of rovibrational eigenstate, etc. The divergence of the statistical theory's predictions from experimental results at low rotational quantum numbers, J < or approximately 5, suggests that either (i) rotational steering is important to the dissociation dynamics at low J, an effect that washes out at high J, or (ii) molecular rotation is approximately a spectator degree of freedom to the dissociation dynamics for these low J states, the states that dominate the thermal reactivity. Surface vibrations are predicted to provide approximately 30% of the energy required to surmount the activation barrier to H(2) dissociation under thermal equilibrium conditions. The MURT with s=1 is used to analytically confirm the experimental finding that partial differential "E(a)(T(s))" partial differential E(t)= -1 for eigenstate-resolved dissociative sticking at translational energies E(t)相似文献   

9.
The dynamics and kinetics of the dissociation of hydrogen over the hexagonal close packed platinum (Pt(111)) surface are investigated using Car–Parrinello molecular dynamics and static density functional theory calculations of the potential energy surfaces. The calculations model the reference energy‐resolved molecular beam experiments, considering the degrees of freedom of the catalytic surface. Two‐dimensional potential energy surfaces above the main sites on Pt(111) are determined. Combined with Car–Parrinello trajectories, they confirm the dissociative adsorption of H2 as the only adsorption pathway on this surface at H2 incindence energies above 5 kJ/mol. A direct determination of energy‐resolved sticking coefficients from molecular dynamics is also performed, showing an excellent agreement with the experimental data at incidence energies in the 5–30 kJ/mol range. Application of dispersion corrections does not lead to an improvement in the prediction of the H2 sticking coefficient. The adsorption reaction rate obtained from the calculated sticking coefficients is consistent with experimentally derived literature values.  相似文献   

10.
Chemical properties of epitaxially grown bimetallic layers may deviate substantially from the behavior of their constituents. Strain in conjunction with electronic effects due to the nearby interface represent the dominant contribution to this modification. One of the simplest surface processes to characterize reactivity of these substrates is the dissociative adsorption of an incoming homo-nuclear diatomic molecule. In this study, the adsorption of O(2) on various epitaxially grown Pt films on Ru(0001) has been investigated using infrared absorption spectroscopy and thermal desorption spectroscopy. Pt/Ru(0001) has been chosen as a model system to analyze the individual influences of lateral strain and of the residual substrate interaction on the energetics of a dissociative adsorption system. It is found that adsorption and dissociative sticking depends dramatically on Pt film thickness. Even though oxygen adsorption proceeds in a straightforward manner on Pt(111) and Ru(0001), molecular chemisorption of oxygen on Pt/Ru(0001) is entirely suppressed for the Pt/Ru(0001) monolayer. For two Pt layers chemisorbed molecular oxygen on Pt terraces is produced, albeit at a very slow rate; however, no (thermally induced) dissociation occurs. Only for Pt layer thicknesses N(Pt) ≥ 3 sticking gradually speeds up and annealing leads to dissociation of O(2), thereby approaching the behavior for oxygen adsorption on genuine Pt(111). For Pt monolayer films a novel state of chemisorbed O(2), most likely located at step edges of Pt monolayer islands is identified. This state is readily populated which precludes an activation barrier towards adsorption, in contrast to adsorption on terrace sites of the Pt/Ru(0001) monolayer.  相似文献   

11.
镍和铂单晶(111)面上氢解离的比较研究周鲁,孙本繁,吕日昌,唐向阳,滕礼坚(中国科学院大连化学物理研究所分子反应动力学国家重点实验室,大连116023)关键词镍晶面,铂晶面,氢解离吸附,位能面,分子催化过渡金属镍和铂是催化加氢、脱氢以及临氢重整的重...  相似文献   

12.
Quantum state-resolved sticking coefficients on Pt(111) and Ni(111) surfaces have been measured for CH4 excited to the first overtone of the antisymmetric C-H stretch (2nu3) at well-defined kinetic energies in the range of 10-90 kJ/mol. The ground-state reactivity of CH4 is approximately 3 orders of magnitude lower on Ni(111) than on Pt(111) for kinetic energies in the range of 10-64 kJ/mol, reflecting a difference in barrier height of 28+/-6 kJ/mol. 2nu3 excitation of CH4 increases its reactivity by more than 4 orders of magnitude on Ni(111), whereas on Pt(111) the reactivity increase is lower by 2 orders of magnitude. We discuss the observed differences in the state-resolved reactivity for the ground state and 2nu3 excited state of methane in terms of a difference in barrier height and transition state location for the dissociation reaction on the two metal surfaces.  相似文献   

13.
Supersonic molecular beams have been used to determine the yield of CO from the partial oxidation of CH4 on a Rh111 catalytic substrate, CH4+12O2-->CO+2H2, as a function of beam kinetic energy. These experiments were done under ultrahigh vacuum conditions with concurrent molecular beams of O2 and CH4, ensuring that there was only a single collision for the CH4 to react with the surface. The fraction of CH4 converted is strongly dependent on the normal component of the incident beam's translational energy, and approaches unity for energies greater than approximately 1.3 eV. Comparison with a simplified model of the methane-Rh111 reactive potential gives insight into the barrier for methane dissociation. These results demonstrate the efficient conversion of methane to synthesis gas, CO+2H2, are of interest in hydrogen generation, and have the optimal stoichiometry for subsequent utilization in synthetic fuel production (Fischer-Tropsch or methanol synthesis). Moreover, under the reaction conditions explored, no CO2 was detected, i.e., the reaction proceeded with the production of very little, if any, unwanted greenhouse gas by-products. These findings demonstrate the efficacy of overcoming the limitations of purely thermal reaction mechanisms by coupling nonthermal mechanistic steps, leading to efficient C-H bond activation with subsequent thermal heterogeneous reactions.  相似文献   

14.
甲醇在Pt-Mo(111)/C表面上的吸附   总被引:1,自引:0,他引:1  
采用密度泛函理论和周期平板模型相结合的方法, 对CH3OH分子在Pt-Mo(111)/C表面的顶位、穴位和桥位共计9种吸附模型进行了构型优化、能量计算和频率分析, 结果表明top-Pt位是较有利的吸附位. Mo掺杂后价带与导带位置均有不同程度的降低, 电子结构的变化使得Pt-Mo(111)/C的催化活性提高. 并且在考虑催化剂抗中毒性能时发现: CO在Pt(111)/C面上的吸附能比甲醇吸附能要高, CO在Pt-Mo(111)/C上的吸附能比甲醇的要低, 说明CO在Pt(111)/C面上的吸附会阻碍甲醇的吸附, 并影响催化过程的进行, 而Pt-Mo(111)/C的抗CO中毒化能力增强, 是催化氧化甲醇较好的催化剂.  相似文献   

15.
The dynamics of H(2)O adsorption on Pt{110}-(1 x 2) is studied using supersonic molecular beam and temperature programed desorption techniques. The sticking probabilities are measured using the King and Wells method at a surface temperature of 165 K. The absolute initial sticking probability s(0) of H(2)O is 0.54+/-0.03 for an incident kinetic energy of 27 kJmol. However, an unusual molecular beam flux dependence on s(0) is also found. At low water coverage (theta<1), the sticking probability is independent of coverage due either to diffusion in an extrinsic precursor state formed above bilayer islands or to incorporation into the islands. We define theta=1 as the water coverage when the dissociative sticking probability of D(2) on a surface predosed with water has dropped to zero. The slow falling H(2)O sticking probability at theta>1 results from compression of the bilayer and the formation of multilayers. Temperature programed desorption of water shows fractional order kinetics consistent with hydrogen-bonded islands on the surface. A remarkable dependence of the initial sticking probability on the translational (1-27 kJ/mol) and internal energies of water is observed: s(0) is found to be essentially a step function of translational energy, increasing fivefold at a threshold energy of 5 kJ/mol. The threshold migrates to higher energies with increasing nozzle temperature (300-700 K). We conclude that both rotational state and rotational alignment of the water molecules in the seeded supersonic expansion are implicated in dictating the adsorption process.  相似文献   

16.
The sticking and scattering of O(2)Pt(111) has been studied by tight-binding molecular dynamics simulations based on an ab initio potential energy surface. We focus, in particular, on the sticking probability as a function of the angle of incidence and the energy and angular distributions in scattering. Our simulations provide an explanation for the seemingly paradox experimental findings that adsorption experiments suggest that the O(2)Pt(111) interaction potential should be strongly corrugated while scattering experiments indicate a rather small corrugation. The potential energy surface is indeed strongly corrugated which leads to a pronounced dependence of the sticking probability on the angle of incidence. The scattered O(2) molecules, however, experience a rather flat surface due to the fact that they are predominantly scattered at the repulsive tail of the potential.  相似文献   

17.
The electronic energy barriers of surface reactions pertaining to the mechanism of the electrooxidation of methane on Pt (111) were estimated with density functional theory calculations on a 10-atom Pt cluster, using both the B3LYP and PW91 functionals. Optimizations of initial and transition states were performed for elementary steps that involve the conversion of CH(4) to adsorbed CO at the Pt/vacuum interface. As a first approximation we do not include electrolyte effects in our model. The reactions include the dissociative chemisorption of CH(4) on Pt, dehydrogenation reactions of adsorbed intermediates (*CH(x) --> *CH(x-1) + *H and *CH(x)O --> *CH(x-1)O + *H), and oxygenation reactions of adsorbed CH(x) species (*CH(x) + *OH --> *CH(x)OH). Many pathways were investigated and it was found that the main reaction pathway is CH(4) --> *CH(3) --> *CH(2) --> *CH --> *CHOH --> *CHO --> *CO. Frequency analysis and transition-state theory were employed to show that the methane chemisorption elementary step is rate-limiting in the above mechanism. This conclusion is in agreement with published experimental electrochemical studies of methane oxidation on platinum catalysts that have shown the absence of an organic adlayer at electrode potentials that allow the oxidation of adsorbed CO. The mechanism of the electrooxidation of methane on Pt is discussed.  相似文献   

18.
Using time-dependent high-resolution x-ray photoelectron spectroscopy at BESSY II, the adsorption and desorption processes of CO on stepped Pt(355) = Pt[5(111) x (111)] were investigated. From a quantitative analysis of C 1s data, the distribution of CO on the various adsorption sites can be determined continuously during adsorption and desorption. These unique data show that the terrace sites are only occupied when the step sites are almost saturated, even at temperatures as low as 130 K. The coverage-dependent occupation of on-top and bridge adsorption sites on the (111) terraces of Pt(355) is found to differ from that on Pt(111), which is attributed to the finite width of the terraces and changes in adsorbate-adsorbate interactions. In particular, no long-range order of the adsorbate layer could be observed by low-energy electron diffraction. Further details are derived from sticking coefficient measurements using the method devised by King and Wells [Proc. R. Soc. London, Ser. A 339, 245 (1974)] and temperature-programmed desorption. The CO saturation coverage is found to be slightly smaller on the stepped surface as compared to that on Pt(111). The initial sticking coefficient has the same high value of 0.91 for both surfaces.  相似文献   

19.
甲醇在Pt-Fe(111)/C表面吸附的理论研究   总被引:1,自引:0,他引:1  
王译伟  李来才  田安民 《化学学报》2008,66(22):2457-2461
采用密度泛函理论和周期平板模型相结合的方法, 对CH3OH分子在Pt-Fe(111)/C表面top, fcc, hcp和bridge位的吸附模型进行了构型优化、能量计算, 结果表明bridge位是较有利的吸附位. 掺杂后费米能级的位置发生了右移, 价带和导带均增宽, 极利于电子-空穴的迁移, 这对提高催化活性是非常有利的. 考察抗中毒性发现: CO在Pt(111)/C面上的吸附能比甲醇吸附能要高, CO在Pt-Fe(111)/C的吸附能比甲醇吸附能要低, 可说明CO在Pt(111)/C面上有中毒效应, 而Pt-Fe(111)/C的抗CO中毒能力增强, 是催化氧化甲醇良好的催化剂.  相似文献   

20.
The effects of lattice motion and relaxation on the dissociative adsorption of methane on a Ni(111) surface are explored. Electronic structure methods based on the density functional theory are used to compute the potential energy surface for this reaction. It is found that, in the transition state and product regions, there are forces causing the Ni atom over which the molecule dissociates to move out of the surface. In order to examine the extent to which the lattice might pucker during this reaction, high dimensional fully quantum scattering calculations are carried out. It is found that a significant amount of lattice puckering can occur, even at large collision energies, lowering the barrier to reaction and increasing the dissociative sticking probability. This is shown to be in contrast to the predictions of the surface oscillator model. While we observe similar puckering forces for this reaction on Pt(111), our calculations suggest that the puckering on this surface will be considerably less due to the larger metal atom mass. The "laser off" reactivities of CD(3)H on Ni(111) are computed, and it is demonstrated that there can be significant contributions to the reactivity from vibrationally excited molecules, particularly at lower collision energies, or when a large nozzle temperature is required to attain the necessary collision energy for reaction. Comparisons are made with recent experiments with regard to the variation of reactivity with collision energy, vibrational state, and surface temperature.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号