首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In the present study, electrospun zeolitic imidazolate framework-8/poly(lactic acid) nanofibers were successfully synthesized and characterized as a potential nanosorbent for the pipette-tip micro-solid phase extraction of chlorpropham, pirimicarb, carbaryl, and methiocarb carbamate insecticides from environmental water samples. The extraction procedure was followed by gas chromatography/mass spectrometry separation and determination of the target analytes. All the effective parameters of the extraction procedure were optimized through the one variable at-a-time method. Thanks to the very simple extraction procedure as well as the application of electrospun nanofibers with high surface area, the four analytes were efficiently extracted with as lowest extraction times as practicable. Under the optimal conditions, the calibration plots of the analytes were obtained within broad linear dynamic ranges of 0.5 – 150 ng mL?1 for chlorpropham and pirimicarb plus 1.0 – 175 ng mL?1 for carbaryl and methiocarb, respectively. Besides, limits of detection as low as 0.2 and 0.15 ng mL?1 for chlorpropham and pirimicarb, respectively, as well as 0.5 ng mL?1 for carbaryl and methiocarb indicate the favorable sensitivity of the analytical procedure. The applicability of the developed method was evaluated by quantitative determination of the target analytes in four different environmental water samples. Relative recoveries higher than 88.0% shows the acceptable accuracy of the method in the quantitative determination of the four carbamate insecticides.  相似文献   

2.

In this research, electrospun polycaprolactam nanofibers were collected on a fine stainless steel mesh sheet without a binder, and a layer of conductive polyaniline was chemically deposited on the nanofibers. The polyaniline immobilized on the polycaprolactam nanofibers provided high electrical conductivity, acceptable mechanical stability, and a large surface area. This assembly was then used as a working electrode in electrochemically controlled solid-phase microextraction (EC-SPME), a fast and environmentally friendly method. The polymer layers were characterized by SEM and FTIR techniques. Significant factors affecting the EC-SPME efficiency were investigated, including the desorption conditions, the sorbent used, the pH of the sample solution, the extraction voltage, the extraction time, and the ionic strength. Under the optimum conditions, the limits of detection and quantification for the target analytes were 0.9–1.8 μg L−1 and 3.0–6.1 μg L−1, respectively. The linear dynamic range was 5–2000 μg L−1, with R2 > 0.993. The method was coupled with HPLC analysis and applied to the determination of angiotensin ΙΙ receptor antagonists (ARA-ΙΙs) in human plasma, and relative recoveries of 91.1–104.3% with RSDs of ≤8.3% were obtained.

  相似文献   

3.
This study aimed to produce electrospun nanofibers from a polyvinyl butyral polymer (PVB) solution enriched with red and grey selenium nanoparticles. Scanning electron microscopic analysis was used to observe the samples, evaluate the fiber diameters, and reveal eventual artifacts in the nanofibrous structure. Average fiber diameter is determined by manually measuring the diameters of randomly selected fibers on scanning electron microscopic (SEM) images. The obtained nanofibers are amorphous with a diameter of approximately 500 nm, a specific surface area of approx. 8 m2 g−1, and 5093 km cm−3 length. If the red and grey selenium nanoparticles were produced in powder form and suspended to the ethanolic solution of PVB then they were located inside and outside the fiber. When selenium nanoparticles were synthesized in the PVB solution, then they were located only inside the fiber. These nanofiber sheets enriched with selenium nanoparticles could be a good candidate for high-efficiency filter materials and medical applications.  相似文献   

4.
Reticular tin nanoparticle-dispersed carbon (Sn/C) nanofibers were fabricated by stabilization of electrospun SnCl4/PAN composite fibers and subsequent carbonization at different temperatures. These Sn/C composite nanofibers used as anode materials for rechargeable lithium-ion batteries (LIBs) show that the Sn/C nanofibers at 700 and 850 °C present much higher charge (785.8 and 811 mA h g?1) and discharge (1211.7 and 993 mA h g?1) capacities than those at 550 and 1000 °C and the as-received CNFs at 850 °C, corresponding to coulombic efficiencies of 64.9% and 81.7%, respectively. The superior electrochemical properties of the intriguing Sn/C nanofibers indicate a promising application in high performance Li-ion batteries.  相似文献   

5.
Porous electrospun nanofibers, as new materials for solid‐phase extraction, were synthesized by electrospinning and coupled with ultra high performance liquid chromatography and mass spectrometry to determine sulfonamide residues in environmental water. Aligned porous polystyrene electrospun nanofibers were fabricated under the mechanism of phase separation. The high‐specific surface of these nanofibers (70 m2/g) could improve recoveries of the target sulfonamides 4–10 times compared with that of polystyrene nonporous material (3.8 m2/g). Under the optimized conditions, 13 sulfonamide residues showed an excellent linear relationship in the range of 0.125–12.5 ng/mL with a linear correlation coefficient (r2) greater than 0.99, and the detection limits of sulfonamides were as low as 0.80–5.0 ng/L. Compared to the commercial C18 and HLB columns, the homemade porous nanofibers columns had some merits including simple fabrication and extraction process, short process time and environmental friendliness. The optimized method was applied to eight water samples collected from different livestock farms (Xuzhou, China). The results showed that polystyrene porous nanofibers were promising to preconcentrate sulfonamides of different polarities in the waste water.  相似文献   

6.
《印度化学会志》2023,100(2):100920
In the present work, silver-doped ZnO (Ag–ZnO NPs) with different concentrations of silver ions (0.3, 0.5, 1.0 and 1.5 mol %) were synthesized by using a simple co-precipitation method. The Ag–ZnO NPs were primarily characterized by XRD, FT-IR, SEM, EDS, TEM, UV–Vis. DRS, PL and BET surface area. The XRD analysis of Ag–ZnO NPs shows a wurtzite structure and optimized Ag–ZnO NPs (1.0 mol %) exhibit a lower crystallite size of 15.96 nm than that of bare ZnO (19.07 nm). Optical study shows a decrease in band gap from 3.13 to 2.97 eV as the concentration of Ag ions increases from 0.3 to 1.5 mol%. TEM images reveal the spherical shape particle with sizes ranging between 10 and 15 nm. From the multipoint BET plot, the surface area of Ag–ZnO NPs found 38.06 m2/gwhich is higher than the ZnO NPs (34.48 m2/g). The photocatalytic study demonstrated that the Ag–ZnO NPs (1.0 mol %) has an excellent photodegradation efficiency of Methyl Orange (96.74%)with a 26% increment as compared to bare ZnO (70.47%). Furthermore, the bactericidal activity of Ag–ZnO NPs (1.0 mol %) was investigated against four different bacterial strains. The results explored that the Gram-negative bacteria (E. coli and P. vulgaris) are more sensitive than Gram-positive (S. aureus and B. cereus) to Ag–ZnO NPs. Overall, the anticipated material is economical and reusable for photodegradation and antibacterial activity.  相似文献   

7.
This article demonstrates how important it is to find the optimal heating conditions when electrospun organic/inorganic composite fibers are annealed to get ceramic nanofibers in appropriate quality (crystal structure, composition, and morphology) and to avoid their disintegration. Polyvinylpyrrolidone [PVP, (C6H9NO) n ] and ammonium metatungstate [AMT, (NH4)6[H2W12O40nH2O] nanofibers were prepared by electrospinning aqueous solutions of PVP and AMT. The as-spun fibers and their annealing were characterized by TG/DTA-MS, XRD, SEM, Raman, and FTIR measurements. The 400–600 nm thick and tens of micrometer long PVP/AMT fibers decomposed thermally in air in four steps, and pure monoclinic WO3 nanofibers formed between 500 and 600 °C. When a too high heating rate and heating temperature (10 °C min−1, 600 °C) were used, the WO3 nanofibers completely disintegrated. At lower heating rate but too high temperature (1 °C min−1, 600 °C), the fibers broke into rods. If the heating rate was adequate, but the annealing temperature was too low (1 °C min−1, 500 °C), the nanofiber morphology was excellent, but the sample was less crystalline. When the optimal heating rate and temperature (1 °C min−1, 550 °C) were applied, WO3 nanofibers with excellent morphology (250 nm thick and tens of micrometer long nanofibers, which consisted of 20–80 nm particles) and crystallinity (monoclinic WO3) were obtained. The FTIR and Raman measurements confirmed that with these heating parameters the organic matter was effectively removed from the nanofibers and monoclinic WO3 was present in a highly crystalline and ordered form.  相似文献   

8.
Response surface methodology (RSM),based on five‐level, four variable Box‐Benkhen technique was investigated for modeling the average fiber diameter of electrospun polyacrylonitrile (PAN) nanofibers. The four important electrospinning parameters were studied including applied voltage (kV), Berry's number, deposition distance from nozzle to collector (cm), and spinning angle (? in degree). The measured fiber diameters were in a good agreement with the predicted results by using RSM technique. High‐regression coefficient between the variables and the response (R2 = 87.74%) indicates excellent evaluation of experimental data by second‐order polynomial regression model. The optimum PAN average fiber diameters of 208 and 37‐nm standard deviation were collected at 19 kV, Berry's number = 10, 25° spinning angle, and 16‐cm deposition distance. The PAN/N,N‐dimethylformamide (DMF) polymer solution with the optimum weight concentration (10 wt.%) was selected to study the effect of dispersing exfoliated graphite nanoplatelets (EGNPs) in PAN/DMF solution on the electrospun EGNP/PAN fibril composite diameter. Five different EGNPs weight concentrations (2, 4, 6, 8, and 10 wt.%) were dispersed in the optimized PAN/DMF polymer solution. Morphology of EGNPs/PAN fibril composites and its distribution were investigated by scanning electron microscopy (SEM) to show the minimum fiber diameter for the above‐mentioned 5 wt. % of EGNPs. A minimum fibril composite diameter of 182 nm was obtained at 10 wt.% of EGNPs. Morphological characteristics of electrospun fibers and their distribution were tested by Raman spectroscopy, SEM, differential light scattering, and high‐resolution transmission electron microscopy.  相似文献   

9.

The hydrothermal synthesis of ZnO–NiO–NiFe2O4 nano-composite is reported. The sample was utilized to characterize via XRD, FE-SEM, EDS, FT-IR, UV–Vis, and BET techniques. The sample consisted of three different phases as ZnO (hexagonal), NiO (cubic), and NiFe2O4 (cubic) with the average particle size as 34 nm and specific surface area, average pore diameter, and pore volume as 64.35 m2 g?1, 13.02 nm, and 0.201 cm3 g?1, respectively. Catalytic behavior of the nano-composite was investigated on the synthesis of thiazolidin-4-one derivatives under thermal and ultrasonic irradiation condition. Our results show that the catalytic activity of ZnO–NiO–NiFe2O4 nano-composite is much higher than ZnO, NiO, and NiFe2O4 metal oxides. All products were prepared in high yields with short reaction times. In addition, the catalyst was recovered for at least five times.

  相似文献   

10.
In this paper, we presented a simple and effective solution route to deposit Pt nanoparticles on electrospun In2O3 nanofibers for H2S gas detection. The morphology and chemical structure of the as-prepared samples were analyzed by scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), and X-ray photoelectron spectra (XPS). The results showed that large quantities of In2O3 nanofibers with diameters about from 60 to 100 nm were obtained and the surface of them was decorated with Pt nanoparticles (5–10 nm in size). The In2O3 nanofibers decorated by Pt nanoparticles exhibited excellent gas sensing properties to H2S, such as high sensitivity, good selectivity and fast response at relatively low temperature.  相似文献   

11.
静电纺丝制备多孔碳纳米纤维及其电化学电容行为   总被引:2,自引:0,他引:2  
采用静电纺丝技术,以聚丙烯腈(PAN)/醋酸锌为前驱体制备复合纳米纤维,随后经碳化、酸化获得多孔碳纳米纤维.扫描电子显微镜(SEM)观察发现,碳纳米纤维表面分布大量孔洞.N2吸脱附等温曲线(BET)测试材料比表面积达413m2·g-1.循环伏安法(CV)和恒流充放电(CP)性能测试表明:多孔碳纳米纤维具有较好的电化学性能,在1A·g-1的电流密度下比电容达275F·g-1.相比碳纳米纤维比容量提高了162%.  相似文献   

12.
The composite nanofibers of xSrSiO3/(100 − x)SrFe12O19 (x = 0–13 wt%) with diameters around 110 nm have been prepared by calcination of the electrospun SrSiO3/SrFe12O19/poly (vinyl pyrrolidone) (PVP) composite fibers at 800–900 °C. The composite nanofibers were characterized by Fourier transform infrared spectroscopy, X-ray diffraction, scanning electron microscopy and vibrating sample magnetometer. After calcined at 800° the M-type strontium ferrite is formed and the strontium silicate exists as an amorphous state when the calcination temperature below about 950 °C. The addition of SrSiO3 has an obvious suppression effect on the strontium ferrite grain growth and the ferrite grain size decreases from 66.9 to 33.5 nm corresponding SrSiO3 content from 0 to 9 wt% in the composite. The specific saturation magnetization (Ms) of the xSrSiO3/(100 − x)SrFe12O19 composite nanofibers exhibits a continuous reduction from 58.0 to 45.6 A m2 kg−1 with the increase of SrSiO3 content from 0 to 13 wt%. With addition of SrSiO3 from 0 to 13 wt%, the coercivity of the composite nanofibers obtained at 900 °C initially increases, reaching a maximum value 501.1 kA m−1 at the silicate content 7 wt%, and then shows a reduction tendency with the strontium silicate content increase further up to 13 wt%. This influence on the coercivity by strontium silicate can be attributed mainly to the ferrite grain growth suppression and the non-magnetic phase barrier for the domains misalignment.  相似文献   

13.
Nylon‐6,6 nanofibers were electrospun at an elongation rate of the order of 1000 s?1 and a cross‐sectional area reduction of the order of 0.33 × 105. The influence of these process peculiarities on the intrinsic structure and mechanical properties of the electrospun nanofibers is studied in the present work. Individual electrospun nanofibers with an average diameter of 550 nm were collected at take‐up velocities of 5 and 20 m/s and subsequently tested to assess their overall stress–strain characteristics; the testing included an evaluation of Young's modulus and the nanofibers' mechanical strength. The results for the as‐spun nanofibers were compared to the stress–strain characteristics of the melt‐extruded microfibers, which underwent postprocessing. For the nanofibers that were collected at 5 m/s the average elongation‐at‐break was 66%, the mechanical strength was 110 MPa, and Young's modulus was 453 MPa, for take‐up velocity of 20 m/s—61%, 150 and 950 MPa, respectively. The nanofibers displayed α‐crystalline phase (with triclinic cell structure). © 2006 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 44: 1482–1489, 2006  相似文献   

14.
Anatase TiO2/nanocellulose composite was prepared for the first time via a one-step method at a relatively low temperature by using cellulose nanofibers as carrier and tetrabutyl titanate as titanium precursor. The morphology, structure and element composition of the composite were characterized by SEM, EDS, TEM, XRD, XPS and UV–vis DRS. The specific surface area and thermal stability of the composite were investigated by N2 adsorption–desorption and thermogravimetric analysis, respectively, and the band gaps of the prepared photocatalysts were calculated based on the UV–vis DRS results. In addition, the prepared composite was used for the photocatalytic degradation of methyl orange (aqueous solution, 40 mg L−1). It was found that the composite had a good morphology and anatase crystal structure, and Ti-O-C bond was formed between TiO2 and nanocellulose. The specific surface area of composite was increased and the thermal stability was decreased compared with the cellulose nanofiber. Moreover, the degradation rate of methyl orange was achieved as 99.72% within 30 min, and no obvious activity loss was observed after five cycles. This work might give some insights into the design of efficient photocatalysts for the treatment of organic dye wastewater.  相似文献   

15.
Ultra-high molecular weight polyethylene (UHMWPE) is reinforced with 1–3 wt % sliver (Ag) nanoparticles and zinc oxide (ZnO) micro-rods, and tensile strength as well as wear resistance of the samples is evaluated. Tensile strength was observed to increase with Ag and ZnO reinforcement up to 18% for 1 wt % ZnO and 1 wt % Ag, but in case of 3 wt % ZnO and 3 wt % Ag + 3 wt % ZnO, it decreases marginally by 4% when compared with neat polymer. The sliding wear rate for 1 wt % Ag + 1 wt % ZnO and 3 wt % Ag + 3 wt % ZnO decreases from 9.54 × 10−5 mm3 (neat polymer) to 7.49 × 10−5 mm3 and 5.65 × 10−5mm3, respectively, showing the synergistic effect of Ag and ZnO reinforcement. In scratch testing, minimum damage is obtained in 1 wt % ZnO reinforced polymer. On one hand, where micro-scratch damage is resisted by harder ZnO, whereas on the other hand, pin on disc wear (repeated surface damage) is protected by softer Ag tribolayer. The improved tensile strength (up to 9.7%) and wear resistance with synergistic addition of Ag and ZnO (both 1 wt %) opens a window in the development of bearing surface biomaterials providing improved longevity and durability, thus, may reduce the chances of revision surgery.  相似文献   

16.
Continuous LaFeO3 nanowires and nanobelts were successfully synthesized using a sol–gel assisted electrospinning method followed by calcination at 500°C in air. The thermal decomposition processes of LaFeO3 are carefully investigated and the best calcining temperature was found to be 500°C. The two nanofibers obtained were characterized using X‐ray diffraction analysis, which shows single phase and the structure of nanobelts has higher crystallinity than that of the nanowires. The scanning electron microscopy reveals that the diameter of the obtained LaFeO3 nanowires is 139.3 nm. And the thickness and width of the nanobelts are 80 and 459 nm. Moreover, the electrospun LaFeO3 nanobelts are endowed with a higher specific surface area compared with the nanowires, which results from the regular one dimensional morphology without any detectable agglomeration and a rough surface.  相似文献   

17.
Porous fiber membranes consisting of 1D assemblies of ZnO nanocrystal-supported poly(vinyl alcohol) (PVA) nanofibers are described. These hybrid nanofiber membranes were assembled by first electrospinning a ZnO precursor-containing PVA aqueous solution. Subsequently, the electrospun composite nanofibers were submerged in a basic ethanol solution. As a result, ZnO precursors in solid PVA matrixes were hydrolyzed to generate ZnO crystals residing on the fiber surfaces. Photoluminescence spectroscopy analysis demonstrated the as-hydrolyzed fiber membranes possess white luminescence. Furthermore, the ZnO-encapsulated PVA nanofibers were prepared by directly electrospinning a ZnO nanocrystal-containing PVA solution as the contrast of the as-hydrolyzed hybrid nanofibers. The surface photovoltage spectroscopy (SPS) confirmed that the as-hydrolyzed hybrid fiber membranes had a strong SPS response, but the directly spun fiber membranes did not have any SPS response. This can be attributed to the favorable structure of the hydrolyzed hybrid nanofibers, that is, the surface residence of ZnO permits ZnO crystals to make direct contact with ITO electrodes to transfer the photogenerated electron originating from ZnO to ITO electrodes. By contrast, the transfer of the photogenerated electron is limited by PVA matrixes in the directly spun fiber system.  相似文献   

18.
Epitaxially grown titanium dioxide (TiO2) nanofibers embedding single crystalline TiO2 nanowires (NWs) were successfully fabricated by electropinning poly(vinyl pyrrolidone)/ethanol solutions mixed with hydrothermally synthesized TiO2 NWs and titanium isopropoxide precursors and subsequently calcinating the electrospun nanofibers. Utilizing scanning electron microscopy (SEM) and transmission electron microscopy (TEM), the morphologies of TiO2 NWs and nanofibers were investigated. High resolution TEM (HR-TEM) and selected area electron diffraction (SAED) allowed us to indentify the fact that, during the calcination process under the optimized condition, titanium isopropoxide precursors were epitaxially crystallized on the surface of single crystalline TiO2 NWs. Based on the X-ray diffraction (XRD) experiments, it was also realized that the crystalline structure of hydrothermally synthesized TiO2 NWs and epitaxially crystallized TiO2 nanofibers is anatase and that TiO2 composite nanofibers embedding TiO2 NWs exhibited a higher crystallinity than the pristine TiO2 nanofibers. Additionally, ultraviolet visible (UV–Vis) spectra of nanofibers indicated that optical properties of TiO2 nanofibers can be tuned by introducing the single crystalline TiO2 NWs.  相似文献   

19.
Ba1−x Sr x TiO3(x = 0–0.5, BST) nanofibers with diameters of 150–210 nm were prepared by using electrospun BST/polyvinylpyrrolidone (PVP) composite fibers by calcination for 2 h at temperatures in the range of 650–800 °C in air. The morphology and crystal structure of calcined BST/PVP nanofibers were characterized as functions of calcination temperature and Sr content with an aid of XRD, FT-IR, and TEM. Although several unknown XRD peaks were detected when the fibers were calcined at temperatures less than 750 °C, they disappeared with increasing the temperature (above 750 °C) due to its thermal decomposition and complete reaction in the formation of BST. In addition, the FT-IR studies of BST/PVP fibers revealed that the intensities of the O–H stretching vibration bands (at 3430 and 1425 cm−1) became weaker with increasing the calcination temperature and a broad band at 540 cm−1, Ti–O vibration, appeared sharper and narrower after calcination above 750 °C due to the formation of metal oxide bonds. However, no effect of Sr content on the crystal structure of the composites was detected.  相似文献   

20.
We present a simple method of obtaining electrically conducting electrospun silk non-woven membranes consisting of nanofibers with multi-walled carbon nanotubes (MWCNTs) adsorbed on their surface. Nanofibrous membranes with fibroin diameters of 460 ± 40 nm were formed from aqueous Bombyx mori fibroin solution by electrospinning. The MWCNTs adhered well to the surface of the highly porous silk nanofibrous membranes when Triton X-100 was used as the surfactant for the dispersion of the MWCNTs in aqueous media. The electrical conductivity of the membranes was 2.4 × 10−4 S/cm due to the presence of the MWCNTs on their surface. In addition, the strong interaction between the MWCNTs and nanofibers keeps them from separating each other, even after ultrasonication. The combination of the high conductivity of the membranes and the simple process used to fabricate them could lead to significant advances in the development of new materials, such as electromagnetic interference shielding or electrostatic dissipation membranes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号