首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Chunhui Xiao 《Talanta》2010,80(5):1719-9434
Polymerized ionic liquid-wrapped carbon nanotubes (PIL-CNTs) were firstly designed for direct electrochemistry and biosensing of redox proteins. The CNTs were coated successfully with polymerized ionic liquid (PIL) layer, as verified by transmission electron microscopy (TEM), thermogravimetric analysis (TGA) and Fourier transform infrared (FT-IR) spectroscopy. The PIL-CNTs were dispersed better in water and showed superior electrocatalysis toward O2 and H2O2 comparing to pristine CNTs and the mixture of IL monomer and CNTs. With glucose oxidase (GOD) as a protein model, the direct electrochemistry of the redox protein was investigated on the PIL-CNTs modified glassy carbon (GC) electrode and excellent direct electrochemical performance of GOD molecules was observed. The proposed biosensor (GOD/PIL-CNTs/GC electrode) displayed good analytical performance for glucose with linear response up to 6 mM, response sensitivity of 0.853 μA mM−1, good stability and selectivity.  相似文献   

2.
《Electroanalysis》2006,18(11):1131-1134
The direct electrochemistry of glucose oxidase (GOD) was revealed at a carbon nanotube (CNT)‐modified glassy carbon electrode, where the enzyme was immobilized with a chitosan film containing gold nanoparticles. The immobilized GOD displays a pair of redox peaks in pH 7.4 phosphate buffer solutions (PBS) with the formal potential of about ?455 mV (vs. Ag/AgCl) and shows a surface‐controlled electrode process. Bioactivity remains good, along with effective catalysis of the reduction of oxygen. In the presence of dissolved oxygen, the reduction peak current decreased gradually with the addition of glucose, which could be used for reagentless detection of glucose with a linear range from 0.04 to 1.0 mM. The proposed glucose biosensor exhibited high sensitivity, good stability and reproducibility, and was also insensitive to common interferences such as ascorbic and uric acid. The excellent performance of the reagentless biosensor is attributed to the effective enhancement of electron transfer between enzyme and electrode surface by CNTs, and the biocompatible environment that the chitosan film containing gold nanoparticles provides for immobilized GOD.  相似文献   

3.
The direct electrochemistry of glucose oxidase (GOD) immobilized in a modified electrode based on a composite film of exfoliated graphite nanosheets (GNSs) and Nafion has been investigated for the first time. Direct electron communication between GOD and the electrode was achieved with a fast electron transfer rate (12.6 s?1). In addition, the bioactivity of GOD was retained after immobilization in the composite film and glucose could be determined based on the decrease of the electrocatalytic response of the reduced form of GOD to dissolved oxygen. The resulting biosensor exhibited higher sensitivity (3.4 μA mM?1). Considering much lower cost of GNSs and ready preparation from graphite, the GNSs-based modified electrode described here is superior to the carbon nanotubes (CNTs)-based modified electrodes and should have wide applications in third-generation biosensors, bioelectronics and electrocatalysis.  相似文献   

4.
XU  Jiming  HAN  Wenxia  YIN  Qifan  SONG  Jie  ZHONG  Hui 《中国化学》2009,27(11):2197-2202
The direct electrochemistry of glucose oxidase (GOD) was achieved based on the immobilization of GOD on a natural nano‐structural attapulgite (ATP) clay film modified glassy carbon (GC) electrode. The immobilized GOD displayed a pair of well‐defined quasi‐reversible redox peaks with a formal potential (E0′) of ?457.5 mV (vs. SCE) in 0.1 mol·L?1 pH 7.0 phosphate buffer solution. The peak current was linearly dependent on the scan rate, indicating that the direct electrochemistry of GOD in that case was a surface‐controlled process. The immobilized glucose oxidase could retain bioactivity and catalyze the oxidation of glucose in the presence of ferrocene monocarboxylic acid (FMCA) as a mediator with the apparent Michaelis‐Menten constant Kappm of 1.16 mmol·L?1. The electrocatalytic response showed a linear dependence on the glucose concentration ranging widely from 5.0×10?6 to 6.0×10?4 mol·L?1 (with correlation coefficient of 0.9960). This work demonstrated that the nano‐structural attapulgite clay was a good candidate material for the direct electrochemistry of the redox‐active enzyme and the construction of the related enzyme biosensors. The proposed biosensors were applied to determine the glucose in blood and urine samples with satisfactory results.  相似文献   

5.
Stable adsorption and direct electrochemistry of glucose oxidase (GOx) occurred on nitric acid (HNO3)-treated multi-walled carbon nanotubes (MWNTs) instead of as-received MWNTs, demonstrating the critical roles of oxygen-containing groups in stableadsorption and direct electrochemistry of GOx on carbon nanotubes (CNTs).  相似文献   

6.
在滴涂法制得单壁碳纳米管(SWNTs)修饰电极的基础上,采用电化学方法沉积纳米羟基磷灰石(HA)涂层,进而利用分子组装技术将葡萄糖氧化酶(GOD)固定到该电极上,制得的修饰电极的循环伏安测量结果表明,GOD发生了直接的电子传递.GOD-HA-SWNTs/GC修饰电极对不同浓度的葡萄糖呈现两个良好的线性响应范围,有望开发...  相似文献   

7.
A novel amperometric biosensor for glucose was developed by entrapping glucose oxidase (GOD) in a chitosan composite doped with ferrocene monocarboxylic acid‐aminated silica nanoparticles conjugate (FMC‐ASNPs) and multiwall carbon nanotubes (MWNTs). The entrapped FMC‐ASNPs conjugate performed excellent redox electrochemistry and the presence of MWNTs improved the conductivity of the composite film. This matrix showed a biocompatible microenvironment for retaining the native activity of the entrapped GOD and was in favor of the accessibility of substrate to the active site of GOD, thus the affinity to substrates is improved greatly. Under optimal conditions this biosensor was able to detect glucose with a detection limit of 10 μM (S/N=3) in the linear range of 0.04 to 6.5 mM. The proximity of these three components FMC‐ASNPs, MWNTs and GOD enhanced the electron transfer between the film and electrode. This composite film can be extended to immobilize other enzymes and biomolecules, which will greatly facilitate the development of biosensors and other bioelectrochemical devices.  相似文献   

8.
A novel composite was fabricated through dispersing multiwalled carbon nanotubes (MWNTs) in gold nanoparticle (GPs) colloid stabilized by chitosan and ionic liquid (i.e., 1‐butyl‐3‐methylimidazolium tetrafluoroborate, BMIMBF4). Transmission electron microscopy (TEM) experiment showed that the GPs highly dispersed on the MWNTs probably due to the electrostatic interaction among GPs, MWNTs and the imidazolium cation of BMIMBF4. X‐ray photoelectron spectroscopy (XPS) indicated that thus‐formed gold nanostructure was mediated by BMIMBF4. When glucose oxidase (GOD) was immobilized on the composite (MWNTs‐GPs) its ultraviolet‐visible absorption spectrum kept almost unchanged. The immobilized GOD coated glassy carbon electrode (GOD/MWNTs‐GPs/GC) exhibited a pair of well‐defined peaks in 0.10 M pH 7.0 phosphate buffer solution (PBS), with a formal potential of ?0.463 V (vs. SCE). The electrochemical process involved two‐electron transfer. The electron transfer coefficient was ca.0.56 and the electron transfer rate constant was 9.36 s?1. Furthermore, the immobilized GOD presented good catalytic activity to the oxidation of glucose in air‐saturated PBS. The Km and Im values were estimated to be 13.7 μM and 0.619 μA. The GOD/MWNTs‐GPs/GC electrode displayed good stability and reproducibility.  相似文献   

9.
The surface nanocrystallization of glassy carbon (GC) electrode was carried out using cyclic voltammetry in anhydrous dimethylformamide containing 0.05 M tetra-n-butylammonium bromine, and carbon nanoparticles with diameter of 10–40 nm were formed on the electrode surface. Comparing with the typical GC electrode, the surface-nanocrystalline GC (SNGC) electrode showed higher electrocatalytic activity for direct electrochemistry of glucose oxidase (GOD) due to higher proportion of edge sites presented on the surface of the SNGC electrode. Because of the surface nanocrystallization of the electrode, a pair of well-defined and quasi-reversible redox peaks of the immobilized GOD was observed for the first time on the GC electrode.  相似文献   

10.
A novel biosensor, comprised of electrode of gold/multi-walled carbon nanotubes–glucose oxidase (Au/MWNTs–GOD), has been developed. The MWNTs were produced by microwave plasma enhanced chemical vapor deposition. The enzyme of GOD was immobilized using MWNTs. Performance and characteristics of the fabricated glucose biosensor were assessed with respect to response time, detection limit, pH value and storage stability. The results show that the fabricated biosensor is sensitive and stable in detecting glucose, indicating that MWNTs are a good candidate material for the immobilization of enzyme in glucose biosensor construction.  相似文献   

11.
《Electroanalysis》2003,15(10):885-891
Initial results on the synthesis of a new conjugated diazonium salt of trans‐4‐cinnamic acid diazonium fluoroborate, which is used for the chemical modification of the glassy carbon (GC) electrode with trans‐4‐cinnamic acid groups through electrochemical reduction, and direct covalent immobilization of glucose oxidase (GOD) on the cinnamic acid groups are presented. The chemically modified GC electrode exhibits a good selectivity relative to the bare GC electrode for the various possible interfering compounds in glucose analysis: namely ascorbic acid and 4‐acetamidophenol. Covalent immobilization of GOD on the chemically modified GC electrode produces a biosensor which responds to glucose concentration changes in the presence of a soluble redox mediator (ferrocenemethanol). The chemical modification of GC by cinnamic acid groups is potentially useful for the attachment of other enzymes and biochemical reagents.  相似文献   

12.
An amperometric glucose biosensor is developed that is based on immobilization of glucose oxidase (GOD) in a composite film of poly(o-aminophenol) (POAP) and carbon nanotubes (CNT), which are electrochemically co-polymerized at a gold (Au) electrode. Because of the high surface per volume ratio and excellent electrical conductivity of CNT, the biosensor based on an Au/POAP/CNT/GOD electrode has lower detection limit (0.01 mM), larger maximum response current (0.24 mA cm(-2)) and higher sensitivity (11.4 mA M(-1) cm(-2)) than the values of the biosensor based on an Au/POAP/GOD electrode. Additionally, the biosensor shows fast response time, large response current, and good anti-interferent ability for ascorbic acid, uric acid and acetaminophen. Good reproducibility and stability of the biosensor are also observed.  相似文献   

13.
Chen X  Chen J  Deng C  Xiao C  Yang Y  Nie Z  Yao S 《Talanta》2008,76(4):763-767
Doped carbon nanotubes are now extremely attractive and important nanomaterials in bioanalytical applications due to their unique physicochemical properties. In this paper, the boron-doped carbon nanotubes (BCNTs) were used in amperometric biosensors. It has been found that the electrocatalytic activity of the BCNTs modified glassy carbon (GC) electrode toward the oxidation of hydrogen peroxide is much higher than that of the un-doped CNTs modified electrode due to the large amount of edge sites and oxygen-rich groups located at the defective sites induced by boron doping. Glucose oxidase (GOD) was selected as the model enzyme and immobilized on the BCNTs modified glassy carbon electrode by entrapping GOD into poly(o-aminophenol) film. The performance of the sensor was investigated by electrochemical methods. At an optimum potential of +0.60 V and pH 7.0, the biosensor exhibits good characteristics, such as high sensitivity (171.2 nA mM(-1)), low detection limit (3.6 microM), short response time (within 6s), satisfactory anti-interference ability and good stability. The apparent Michaelis-Menten constant (K(m)(app)) is 15.19 mM. The applicability to the whole blood analysis of the enzyme electrode was also evaluated.  相似文献   

14.
We report on a novel amperometric glassy carbon biosensing electrode for glucose. It is based on the immobilization of a highly sensitive glucose oxidase (GOx) by affinity interaction on carbon nanotubes (CNTs) functionalized with iminodiacetic acid and metal chelates. The new technique for immobilization is exploiting the affinity of Co(II) ions to the histidine and cysteine moieties on the surface of GOx. The direct electrochemistry of immobilized GOx revealed that the functionalized CNTs greatly improve the direct electron transfer between GOx and the surface of the electrode to give a pair of well-defined and almost reversible redox peaks and undergoes fast heterogeneous electron transfer with a rate constant (k s) of 0.59?s?1. The GOx immobilized in this way fully retained its activity for the oxidation of glucose. The resulting biosensor is capable of detecting glucose at levels as low as 0.01?mM, and has excellent operational stability (with no decrease in the activity of enzyme over a 10?days period). The method of immobilizing GOx is easy and also provides a model technique for potential use with other redox enzymes and proteins.
Figure
This paper reports a novel amperometric biosensor for glucose based on the immobilization of the glucose oxidase (GOx) by affinity interaction on carbon nanotubes (CNTs) functionalized with iminodiacetic acid and metal chelates. The GOx immobilized in this way fully retained its activity for the oxidation of glucose. The resulting biosensor exhibited high sensitivity, good stability and selectivity.  相似文献   

15.
采用石英晶体微天平(EQCM)技术监测了裸金电极、镀金和碳纳米管修饰金电极上葡萄糖氧化酶(GOD)的吸附过程. 通过EQCM测量吸附固定的GOD质量, 并实时检测酶反应产物H2O2的氧化电量, 求算了各表面上吸附态GOD的比活性(ESAi). 结果表明, 各表面上均可吸附一定的GOD, 且吸附态GOD均有一定的酶活性; 修饰CNTs可增大酶吸附量和酶电极对葡萄糖的响应电流, 但ESAi随CNTs修饰量的增大而降低; Au电极上电镀金后, 酶吸附量和酶电极对葡萄糖的响应电流亦增大, 但ESAi与裸金电极上的基本一致.  相似文献   

16.
A functional composite was prepared by mixing mesoporous carbon, glucose oxidase (GOD) and 1-butyl-3-methylimidazolium hexafluorophosphate, an ionic liquid, and characterized by SEM and RA-IR. The composite was filled in a microcavity to fabricate a paste microelectrode, demonstrating direct electrochemistry of GOD with a pair of well-defined redox peaks. The composite microelectrode was used as a glucose microsensor, showing good sensitivity over a concentration range from 10.0 to 80.0 μmol/L and a Michaelis–Menten constant of 2.42 μmol/L. This work demonstrates an efficient and accurate approach to study direct electrochemistry with potential applications in various enzymatic biosensors.  相似文献   

17.
The direct electrochemistry of glucose oxidase (GOD) immobilized on a hexagonal mesoporous silica modified glassy carbon electrode was investigated. The adsorbed GOD displayed a pair of redox peaks with a formal potential of -417 mV in 0.1 M pH 6.1 phosphate buffer solution (PBS). The response showed a diffusion-controlled electrode process with a two-electron transfer coupled with a two-proton transfer reaction process. GOD immobilized on a hexagonal mesoporous silica retained its bioactivity and stability. In addition, the immobilized GOD could electrocatalyze the oxidation of glucose to gluconlactone by taking ferrocene monocarboxylic acid (FMCA) as a mediator in N(2) saturated solutions, indicating that the electrode may have the potential application in biosensors to analyze glucose. The sensor could exclude the interference of commonly coexisted uric acid, p-acetaminophenol and ascorbic acid and diagnose diabetes very fast and sensitively. This work demonstrated that the mesoporous silica provided a novel matrix for protein immobilization and the construction of biosensors.  相似文献   

18.
以中性红为电子媒介体,电聚合于Nafion修饰的玻碳电极表面,以戊二醛作交联剂固定葡萄糖氧化酶,最后覆盖一层Nafion膜防止酶流失,构建一种新型葡萄糖生物传感器.详细探讨了传感器的电化学性能及对葡萄糖的最佳响应条件.结果表明,30℃时,传感器在pH 7.0的PBS中对葡萄糖的线性响应范围为1.0×10-5~5.0×10-3mol.L-1.该传感器制作简单、性能优良,有潜在应用前景.  相似文献   

19.
《Analytical letters》2012,45(9):1785-1799
Abstract

Multiwalled carbon nanotubes (MWNTs) were treated with a mixture of concentrated sulfuric and nitric acid to introduce carboxylic acid groups to the nanotubes. Conducting polymer film was prepared by electrochemical polymerization of neutral red (NR). By using a layer‐by‐layer method, homogeneous and stable MWNTs and poly (neutral red) (PNR) multilayer films were alternately assembled on glassy carbon (GC) electrodes. With the introduction of PNR, the MWNTs/PNR multilayer film system showed synergy between the MWNTs and PNR, with a significant improvement of redox activity due to the excellent electron‐transfer ability of carbon nanotubes (CNTs) and PNR. The electropolymerization is advantageous, providing both prolonged long‐term stability and improved catalytic activity of the resulting modified electrodes. The MWNTs/PNR multilayer film modified glassy carbon electrode allows low potential detection of hydrogen peroxide with high sensitivity and fast response time. As compared to MWNTs and PNR‐modified GC electrodes, the magnitude of the amperometric response of the MWNTs/PNR composite‐modified GC electrode is more than three‐fold greater than that of the MWNTs modified GC electrode, and nine‐fold greater than that of the PNR‐modified GC electrode. With the immobilization of glucose oxidase onto the electrode surface using glutaric dialdehyde, a biosensor that responds sensitively to glucose has been constructed. In pH 6.98 phosphate buffer, nearly interference‐free determination of glucose has been realized at ?0.2 V vs. SCE with a linear range from 50 µM to 10 mM and response time <10s. The detection limit was 10 µM glucose (S/N=3).  相似文献   

20.
将NaAuCl4、葡萄糖氧化酶(GOx)和葡萄糖混合,借一步酶促反应制得吸附GOx的金纳米颗粒(AuNPs),再通过滴干修饰法研制了Nafion/GOx-AuNPs修饰的玻碳(GC)电极,并考察了该酶电极上GOx的直接电化学和生物传感性能. 这种酶法合成的GOx-AuNPs复合物有良好的酶直接电化学活性,也保持了GOx的生物活性,似可归因于酶法合成的纳米金更接近酶氧化还原活性中心的缘故. 该酶电极在-0.4 V(vs. SCE)电位下,其稳态电流下降与葡萄糖浓度(0.5 4 mmol·L-1)成正比,检测下限0.2 mol·L-1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号