首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 750 毫秒
1.
Basic problems of super-and hypersonic magnetohydrodynamics (MHD) associated with the determination of the integral characteristics of bodies and vehicles inside which there are systems generating a uniform magnetic field are considered. Three classes of flows, namely, flow in a hypersonic multimode fixed-geometry air-intake; internal and external flow in a model of a hypersonic vehicle containing an air-intake with an MHD generator, a combustion chamber, and a supersonic nozzle; and hypersonic flow past a blunt cone are studied using numerical simulation and theoretical analysis (on the basis of the complete averaged system of Navier-Stokes equations and the electrodynamic equations). Attention is concentrated on the presence of an additionalmagnetic force acting on the system generating themagnetic field and, consequently, on the body and initiating an additional drag (in the case of a vehicle-reducing its thrust). Attractive possibilities for MHD flow control, namely, an increase in the degree of flow compression in the air-intake, a reduction in the ignition length in the combustion chamber, and a decrease in the heat flux to the nose of the body, are noted, as well as negative effects associated with the action of the magnetic force on the bodies considered.  相似文献   

2.
荣升 《力学学报》1993,25(6):658-664
本文导出了在磁场作用下导电流体热对流流动的方程组及其定解条件,用数值方法模拟了由磁场控制的单晶生长热对流问题,计算结果说明磁场可以有效地抑制流动在壁面处的分离、单胞对流变为多胞对流以及速度和温度的振荡等热不稳定现象,说明了磁场对不稳定热对流有明显的致稳作用。  相似文献   

3.
The two-dimensional problem of hypersonic flow past a cylindrical body with a plane magnetic dipole in the presence of an external magnetic field is considered. The magnetic moment of the dipole is parallel to the free-stream velocity. The flow parameters correspond to a velocity of 7000 m/s at an altitude of approximately 65 km in the Earth’s atmosphere. The system of MHD equations (the Euler equations with volume MHD momentumand energy sources and the magnetic induction equation) was solved using the stabilization method. The calculations were carried out for two magnetic Reynolds numbers: (Rem)1 = 0.18 (corresponds to the parameters of the equilibrium ionized plasma in the shock layer) and (Rem)2 = 1.8 (the plasma conductivity increases by a factor of 10). The solutions obtained are analyzed, the effect of Rem on the flow characteristics, namely, the shock wave stand-off from the body, the configuration of the vortex structures, and the aerodynamic and ponderomotive components of the body drag, is determined.  相似文献   

4.
Problems of the deceleration of a supersonic conducting flow by a magnetic field are investigated. A conducting gas flow in a circular tube is considered in the presence of an axisymmetric magnetic field induced by a unit current loop or solenoid of finite length. The analysis is carried out on the basis of both the Euler equations (inviscid gas) and the complete system of Navier-Stokes equations for laminar viscous gas flow and turbulent flow using a one-parameter turbulence model. The numerical simulation is based on an implicit relaxation finite-difference scheme which is a modification of the Godunov method. The total pressure losses are determined for various values of the magnetohydrodynamic (MHD) interaction, the initial Mach number, and different magnetic field geometries and it is shown that the irreversible losses are significant in MHD supersonic flow deceleration.  相似文献   

5.
The magnetohydrodynamics(MHD) convection flow and heat transfer of an incompressible viscous nanofluid past a semi-infinite vertical stretching sheet in the presence of thermal stratification are examined.The partial differential equations governing the problem under consideration are transformed by a special form of the Lie symmetry group transformations,i.e.,a one-parameter group of transformations into a system of ordinary differential equations which are numerically solved using the Runge-Kutta-Gillbased shooting method.It is concluded that the flow field,temperature,and nanoparticle volume fraction profiles are significantly influenced by the thermal stratification and the magnetic field.  相似文献   

6.
The method of force sources is used to consider the planar problem of the motion of a circular cylinder in a viscous electroconductive medium with a magnetic field. The conventional and magnetic Reynolds numbers are assumed to be small. Expressions are obtained for the hydrodynamic reaction forces of the medium, acting on the moving cylinder. It is shown that as a result of the flow anisotropy in the medium, caused by the magnetic field, in addition to the resistance forces on bodies moving at an angle to the field, there are deflecting forces perpendicular to the velocity vector. The velocity field disturbances at great distances from the moving cylinder are determined.The problems of viscous electroconductive flow about solid bodies in the presence of a magnetic field constitute one of the divisions of magnetohydrodynamics. Motion of an electroconductive medium in a magnetic field gives rise to inductive electromagnetic fields and currents which interact with the velocity and pressure hydrodynamic fields in the medium [1, 2]. Under conditions of sufficiently strong interaction, the number of independent flow similarity parameters in MHD is considerably greater than in conventional hydrodynamics. This circumstance complicates the theoretical analysis of MHD flow about bodies, and therefore we must limit ourselves to consideration of individual particular flow cases.Here we consider the linear problem of the motion of an infinite circular cylinder in a viscous incompressible medium with finite electroconductivity located in a uniform magnetic field.There are many studies devoted to the flow of a viscous electroconductive medium with a magnetic field about solid bodies (see, for example, [3–5]). Because of this, some of the results obtained here include previously known results, which will be indicated below. In contrast to the cited studies, the examination is made by the method of force sources, suggested in [6]. This method permits obtaining integral equations for the distribution of the forces acting on the surface of the moving body. Their solution is obtained for small Reynolds and Hartmann numbers. Then the nature of the velocity disturbances at great distances from the body are determined. These results are compared with conventional viscous flow about a cylinder in the Oseen approximation.  相似文献   

7.
In this study, matrix representation of the Chebyshev collocation method for partial differential equation has been represented and applied to solve magnetohydrodynamic (MHD) flow equations in a rectangular duct in the presence of transverse external oblique magnetic field. Numerical solution of velocity and induced magnetic field is obtained for steady‐state, fully developed, incompressible flow for a conducting fluid inside the duct. The Chebyshev collocation method is used with a reasonable number of collocations points, which gives accurate numerical solutions of the MHD flow problem. The results for velocity and induced magnetic field are visualized in terms of graphics for values of Hartmann number H≤1000. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

8.
Fracture of a rectangular piezoelectromagnetic body   总被引:5,自引:0,他引:5  
The singular stress, electric fields and magnetic fields in a rectangular piezoelectromagnetic body containing a center Griffith crack under longitudinal shear are obtained. Fourier transforms and Fourier sine series are used to reduce the mixed boundary value problems of the crack, which is assumed to be impermeable, to dual integral equations. The solution of the dual integral equations is then expressed in terms of Fredholm integral equations of the second kind. Expressions for stresses, electric displacements and magnetic inductions in the vicinity of the crack tip are derived. Also obtained are the field intensity factors and the energy release rates. Numerical results obtained show that the geometry of the rectangular body have significant influence on the field intensity factors and the energy release rates.  相似文献   

9.
The objective of the present work is to investigate theoretically the MHD convective flow and heat transfer of an incompressible viscous nanofluid past a porous vertical stretching sheet in the presence of variable stream condition due to solar radiation (incident radiation). The governing equations are derived using the usual boundary-layer and Boussinesq approximations and accounting for the presence of an applied magnetic field and incident radiation flux. The absorbed radiation acts as a distributed source which initiates buoyancy-driven flow and convection in the absorbed layer. The partial differential equations governing the problem under consideration are transformed by a special form of Lie symmetry group transformations viz. one-parameter group of transformation into a system of ordinary differential equations which are solved numerically using Runge Kutta Gill based shooting method. The conclusion is drawn that the flow field and temperature are significantly influenced by radiation, heat source and magnetic field.  相似文献   

10.
This paper presents a dual reciprocity boundary element method (DRBEM) formulation coupled with an implicit backward difference time integration scheme for the solution of the incompressible magnetohydrodynamic (MHD) flow equations. The governing equations are the coupled system of Navier‐Stokes equations and Maxwell's equations of electromagnetics through Ohm's law. We are concerned with a stream function‐vorticity‐magnetic induction‐current density formulation of the full MHD equations in 2D. The stream function and magnetic induction equations which are poisson‐type, are solved by using DRBEM with the fundamental solution of Laplace equation. In the DRBEM solution of the time‐dependent vorticity and current density equations all the terms apart from the Laplace term are treated as nonhomogeneities. The time derivatives are approximated by an implicit backward difference whereas the convective terms are approximated by radial basis functions. The applications are given for the MHD flow, in a square cavity and in a backward‐facing step. The numerical results for the square cavity problem in the presence of a magnetic field are visualized for several values of Reynolds, Hartmann and magnetic Reynolds numbers. The effect of each parameter is analyzed with the graphs presented in terms of stream function, vorticity, current density and magnetic induction contours. Then, we provide the solution of the step flow problem in terms of velocity field, vorticity, current density and magnetic field for increasing values of Hartmann number. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

11.
There is a continuous need for an updated series of numerical benchmarks dealing with various aspects of the magnetohydrodynamics (MHD) phenomena (i.e. interactions of the flow of an electrically conducting fluid and an externally imposed magnetic field). The focus of the present study is numerical magnetohydrodynamics (MHD) where we have performed an extensive series of simulations for generic configurations, including: (i) a laminar conjugate MHD flow in a duct with varied electrical conductivity of the walls, (ii) a back-step flow, (iii) a multiphase cavity flow, (iv) a rising bubble in liquid metal and (v) a turbulent conjugate MHD flow in a duct with varied electrical conductivity of surrounding walls. All considered benchmark situations are for the one-way coupled MHD approach, where the induced magnetic field is negligible. The governing equations describing the one-way coupled MHD phenomena are numerically implemented in the open-source code OpenFOAM. The novel elements of the numerical algorithm include fully-conservative forms of the discretized Lorentz force in the momentum equation and divergence-free current density, the conjugate MHD (coupling of the wall/fluid domains), the multi-phase MHD, and, finally, the MHD turbulence. The multi-phase phenomena are simulated with the Volume of Fluid (VOF) approach, whereas the MHD turbulence is simulated with the dynamic Large-Eddy Simulation (LES) method. For all considered benchmark cases, a very good agreement is obtained with available analytical solutions and other numerical results in the literature. The presented extensive numerical benchmarks are expected to be potentially useful for developers of the numerical codes used to simulate various types of the complex MHD phenomena.  相似文献   

12.
磁流体流动在现代工业和科研中有着广泛的应用,但磁流体的流动受到磁场的影响,与一般流体区别较大,需要对其进行深入的研究。磁流体的流动受到流体力学流动方程和麦克斯韦方程的共同影响,其精确解在有限条件下才能得到,因此对磁流体的流动进行数值模拟具有重要的意义。本文采用移动最小二乘法计算形函数,利用无网格局部Petrov-Galerkin(MLPG)法得到控制方程的离散形式,在管壁为任意电导率及任意方向外加磁场的条件下,对方形直管道中定常流动的磁流体进行了数值计算。MLPG法的计算是基于节点的,不需要任何网格或单元,是一种真正的无网格方法。计算结果与Scheriff精确解进行了比较,表明该方法适用于中等以下哈特曼数的磁流体流动计算。  相似文献   

13.
Hypersonic MHD air flow past a blunt body in the presence of an external magnetic field is considered. The MHD effect on the flow consists in a significant increase in the shock wave stand-off from the body surface and a significant reduction in the heat flux to the wall (up to 50%). It is shown that even in the presence of a strong Hall effect the intensity of the magnetohydrodynamic interaction in the plasma behind the shock wave remains at a high level commensurable with the ideal case of the absence of a Hall effect.  相似文献   

14.
This paper is devoted to the analysis of a pulsating MHD flow in a rectangular channel, submitted to an applied DC magnetic field and an imposed harmonically oscillating thermo-acoustically generated pressure gradient. The resulting AC current is collected by two electrodes placed on one either side of the channel. The walls of the channel are assumed electrically conducting. The channel is considered sufficiently long to justify the hypothesis of a fully developed flow. The analytical solution proposed is based on a simultaneous resolution of the Navier–Stokes and induction equations. This solution is limited to moderate values of the magnetic Reynolds number.  相似文献   

15.
The structure of one-dimensional magnetohydrodynamics (MHD) shock waves is studied using the Navier–Stokes equations for the non-ideal gas phase. The exact solutions are obtained for the flow variables (i.e. particle velocity, temperature, pressure and change-in-entropy) within the shock transition region. The equation of state for a non-ideal gas is considered as given by Landau and Lifshitz. The effects of the non-idealness parameter and coefficient of viscosity of the gas are analysed on the flow variables assuming the magnetic field having only constant axial component. The findings confirm that the thickness of MHD shock front increases with decreasing values of the non-idealness parameter.  相似文献   

16.
The effect of the Hall current on the magnetohydrodynamic (MHD) natural convection flow from a vertical permeable flat plate with a uniform heat flux is analyzed in the presence of a transverse magnetic field.It is assumed that the induced magnetic field is negligible compared with the imposed magnetic field.The boundary layer equations are reduced to a suitable form by employing the free variable formulation (FVF) and the stream function formulation (SFF).The parabolic equations obtained from FVF are numer...  相似文献   

17.
An analytic model of steady-state two-dimensional flows in coaxial plasma-accelerator channels in the presence of a longitudinal magnetic field is proposed. The solution of the problem is found in the smooth channel approximation for the MHD equations of an ideal two-component plasma. An example of the developing axisymmetric flows is given and the features of the plasma-dynamic processes are investigated. It is found that the Hall effect and the anode flow zone can be reduced using a longitudinal field and plasma rotation.  相似文献   

18.
Magnetohydrodynamic (MHD) flow of a viscous electrically conducting incompressible fluid between two stationary impermeable disks is considered. A homogeneous electric current density vector normal to the surface is specified on the upper disk, and the lower disk is nonconducting. The exact von Karman solution of the complete system of MHD equations is studied in which the axial velocity and the magnetic field depend only on the axial coordinate. The problem contains two dimensionless parameters: the electric current density on the upper plate Y and the Batchelor number (magnetic Prandtl number). It is assumed that there is no external source that produces an axial magnetic field. The problem is solved for a Batchelor number of 0–2. Fluid flow is caused by the electric current. It is shown that for small values of Y, the fluid velocity vector has only axial and radial components. The velocity of motion increases with increasing Y, and at a critical value of Y, there is a bifurcation of the new steady flow regime with fluid rotation, while the flow without rotation becomes unstable. A feature of the obtained new exact solution is the absence of an axial magnetic field necessary for the occurrence of an azimuthal component of the ponderomotive force, as is the case in the MHD dynamo. A new mechanism for the bifurcation of rotation in MHD flow is found.  相似文献   

19.
It is pointed out that there exists a hidden analogy between magnetohydrodynamic (MHD) and conventional computational fluid dynamic (CFD) equations. This allows the generalization of any conventional CFD code so that the effects of MHD can be accounted for. This generalization is actually made for the FLUENT CFD code. Although this generalized FLUENT code can easily be adjusted to any MHD environment, it has been specifically designed for metallurgical applications. Predictions of the code are validated against the analytical solutions for the Poiseuille-Hartmann flow and for the shielding of magnetic field oscillations by a conducting medium (skin effect).  相似文献   

20.
毛洁  王彦利  王浩 《力学学报》2018,50(6):1387-1395
热核聚变反应堆液态金属包层应用中的一个重要问题是液态金属在导电管中流动和强磁场相互作用产生的额外的磁流体动力学压降.这种磁流体动力学压降远远大于普通水力学压降.美国阿贡国家实验室ALEX研究小组,对非均匀磁场下导电管中液态金属磁流体动力学效应进行了实验研究,其实验结果成为液态金属包层数值验证的标准模型之一.液态金属包层在应用中会受到不同方向的磁场作用,本文以ALEX的非均匀磁场下导电方管中液态金属管流实验中的一组参数为基础,保持哈特曼数、雷诺数和壁面电导率不变,采用三维直接数值模拟的方法,研究了外加磁场与侧壁之间的倾角对导电方管内液态金属流动的速度、电流和压降分布的影响.研究结果表明:沿流向相同横截面上的速度、电流以及压力分布均随磁场的倾斜而同向旋转.倾斜磁场均匀段,横截面上的高速区位于平行磁场方向的哈特曼层和平行层交叉位置,压力梯度随磁场倾角的增大先增大后减小.倾斜磁场递减段,在三维磁流体动力学效应作用下,横截面上的高速射流位置向垂直磁场方向偏移.磁场递减段的三维磁流体动力学压降随磁场倾角的增大而增大.随磁场倾斜,截面上的射流峰值逐渐减小,二次流增强,引发层流向湍流的转捩.   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号