首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We report experimental results for electron scattering from perfluorocyclobutane, c-C(4)F(8), obtained from measurements in our two laboratories. A set of differential, integral, and momentum transfer cross sections is provided for elastic scattering for incident electron energies from 1.5 to 100 eV. Inelastic scattering (vibrational excitation) cross sections have been measured for incident electron energies of 1.5, 2, 5, 6, and 7 eV. In order to investigate the role of intermediate negative ions (resonances) in the scattering process we have also measured an excitation function for elastic scattering and vibrational excitation of the ground electronic state of C(4)F(8) for incident energies between 0.6 and 20 eV. These results are compared with the limited amount of data available in the literature for scattering from this molecule.  相似文献   

2.
1,1-difluoroethylene (1,1-C2H2F2) molecules have been studied for the first time experimentally and theoretically by electron and positron impact. 0.4-1000 eV electron and 0.2-1000 eV positron impact total cross sections (TCSs) were measured using a retarding potential time-of-flight apparatus. In order to probe the resonances observed in the electron TCSs, a crossed-beam method was used to investigate vibrational excitation cross sections over the energy range of 1.3-49 eV and scattering angles 90 degrees and 120 degrees for the two loss energies 0.115 and 0.381 eV corresponding to the dominant C-H (nu2 and nu9) stretching and the combined C-F (nu3) stretching and CH2 (nu11) rocking vibrations, respectively. Electron impact elastic integral cross sections are also reported for calculations carried out using the Schwinger multichannel method with pseudopotentials for the energy range from 0.5 to 50 eV in the static-exchange approximation and from 0.5 to 20 eV in the static-exchange plus polarization approximation. Resonance peaks observed centered at about 2.3, 6.5, and 16 eV in the TCSs have been shown to be mainly due to the vibrational and elastic channels, and assigned to the B2, B1, and A1 symmetries, respectively. The pi* resonance peak at 1.8 eV in C2H4 is observed shifted to 2.3 eV in 1,1-C2H2F2 and to 2.5 eV in C2F4; a phenomenon attributed to the decreasing C=C bond length from C2H4 to C2F4. For positron impact a conspicuous peak is observed below the positronium formation threshold at about 1 eV, and other less pronounced ones centered at about 5 and 20 eV.  相似文献   

3.
We report results of measurements and calculations of absolute cross sections for electron scattering from furan molecules (C(4)H(4)O). The experimental absolute differential cross sections (DCSs) for elastic electron scattering were obtained for the incident energies from 50 eV to 300 eV and for scattering angles from 20[ordinal indicator, masculine] to 110[ordinal indicator, masculine], by using a crossed electron-target beam setup and the relative flow technique for calibration to the absolute scale. The calculations of the electron interaction cross sections are based on a corrected form of the independent-atom method, known as the screening corrected additivity rule (SCAR) procedure and using an improved quasifree absorption model. The latter calculations also account for rotational excitations in the approximation of a free electric dipole and were used to obtain elastic DCSs as well as total and integral elastic cross sections which are tabulated in the energy range from 10 to 10 000 eV. All SCAR calculated cross sections agree very well with both the present and previously published experimental results. Additionally, calculations based on the first Born approximation were performed to calculate both elastic and vibrationally inelastic DCSs for all the modes of furane, in the energy range from 50 eV to 300 eV. The ratios of the summed vibrational to elastic DCSs are presented and discussed. Finally, the present results for furan are compared with previously published elastic DCSs for the tetrahydrofuran molecule and discussed.  相似文献   

4.
Experimental absolute differential cross sections for elastic scattering, and for vibrational and electronic excitation of Pt(PF(3))(4) by low-energy electrons are presented. The elastic cross sections have a deep angle-dependent Ramsauer-Townsend minimum (E(min) = 0.26 eV at θ = 135°). The angular distributions of the elastic cross section at and above 6.5 eV show an unusually narrow peak at an angle which decreases with increasing energy (it is at 40° at 20 eV). Wavy structure is observed at higher angles at 15 and 20 eV. Vibrational excitation cross sections reveal five shape resonances, at 0.84, 1.75, 3.3, 6.6, and 8.5 eV. The angular distributions of the vibrational cross sections have a strong forward peak and are nearly isotropic above about 60°. Electronically excited states are characterized by electron energy-loss spectra. They show a number of unstructured bands, the lowest at 5.8 eV. They are assigned to Rydberg states converging to the 1st and 2nd ionization energies. The cross sections for electronic excitation have very high forward peaks, reaching the value of 50 A?(2) at 50 eV and 0° scattering angle. Purity of the sample was monitored by the very low frequency (26 meV) Pt-P stretch vibration in the energy-loss spectra.  相似文献   

5.
We report absolute differential cross sections (DCSs) for elastic electron scattering from GeF(4). The incident electron energy range was 3-200 eV, while the scattered electron angular range was typically 15°-150°. In addition, corresponding independent atom model (IAM) calculations, within the screened additivity rule (SCAR) formulation, were also performed. Those results, particularly for electron energies above about 10 eV, were found to be in good quantitative agreement with the present experimental data. Furthermore, we compare our GeF(4) elastic DCSs to similar data for scattering from CF(4) and SiF(4). All these three species possess T(d) symmetry, and at each specific energy considered above about 50 eV their DCSs are observed to be almost identical. These indistinguishable features suggest that high-energy elastic scattering from these targets is virtually dominated by the atomic-F species of the molecules. Finally, estimates for the measured GeF(4) elastic integral cross sections are derived and compared to our IAM-SCAR computations and with independent total cross section values.  相似文献   

6.
We present a joint theoretical-experimental study on electron scattering by methanol (CH(3)OH) and ethanol (C(2)H(5)OH) in a wide energy range. Experimental differential, integral and momentum-transfer cross sections for elastic electron scattering by ethanol are reported in the 100-1000 eV energy range. The experimental angular distributions of the energy-selected electrons are measured and converted to absolute cross sections using the relative flow technique. Moreover, elastic, total, and total absorption cross sections for both alcohols are calculated in the 1-500 eV energy range. A complex optical potential is used to represent the dynamics of the electron-alcohol interaction, whereas the scattering equations are solved iteratively using the Pade?'s approximant technique. Our calculated data agree well with those obtained using the Schwinger multichannel method at energies up to 20 eV. Discrepancies at high energies indicate the importance of absorption effects, included in our calculations. In general, the comparison between our theoretical and experimental results, as well as with other experimental data available in the literature, also show good agreement. Nevertheless, the discrepancy between the theoretical and experimental total cross sections at low incident energies suggests that the experimental cross sections measured using the transmission technique for polar targets should be reviewed.  相似文献   

7.
Six-dimensional quantum dynamical and quasiclassical trajectory (QCT) calculations are reported for the reaction and vibrationally inelastic scattering of (v = 0,1,j = 0) H(2) scattering from Cu(110), and for the reaction and rovibrationally elastic and inelastic scattering of (v = 1,j = 1) H(2) scattering from Cu(110). The dynamics results were obtained using a potential energy surface obtained with density functional theory using the PW91 functional. The reaction probabilities computed with quantum dynamics for (v = 0,1,j = 0) were in excellent agreement with the QCT results obtained earlier for these states, thereby validating the QCT approach to sticking of hydrogen on Cu(110). The vibrational de-excitation probability P(v=1,j = 0 --> v = 0) computed with the QCT method is in remarkably good agreement with the quantum dynamical results for normal incidence energies E(n) between 0.2 and 0.6 eV. The QCT result for the vibrational excitation probability P(v = 0,j = 0 --> v = 1) is likewise accurate for E(n) between 0.8 and 1 eV, but the QCT method overestimates vibrational excitation for lower E(n). The QCT method gives probabilities for rovibrationally (in)elastic scattering, P(v = 1,j = 1 --> v('),j(')), which are in remarkably good agreement with quantum dynamical results. The rotationally averaged, initial vibrational state-selective reaction probability obtained with QCT agrees well with the initial vibrational state-selective reaction probability extracted from molecular beam experiments for v = 1, for the range of collision energies for which the v=1 contribution to the measured total sticking probability dominates. The quantum dynamical probabilities for rovibrationally elastic scattering of (v = 1,j = 1) H(2) from Cu(110) are in good agreement with experiment for E(n) between 0.08 and 0.25 eV.  相似文献   

8.
The electronic transitions and resonance-enhanced vibrational excitations of octafluorocyclopentene (c-C5F8) have been investigated using high-resolution photoabsorption spectroscopy in the energy range 6-11 eV. In addition, the high-resolution electron energy loss spectrum (HREELS) was recorded under the electric dipolar excitation conditions (100 eV incident energy, approximately 0 degrees scattering angle) over the 5-14 eV energy loss range. A He(I) photoelectron spectrum (PES) has also been recorded between 11 and 20 eV, allowing us to derive a more precise value of (11.288 +/- 0.002) eV for the ground neutral state adiabatic ionization energy. All spectra presented in this paper represent the first and highest resolution data yet reported for octafluorocyclopentene. Ab initio calculations have been performed for helping in the assignment of the spectral bands for both neutral excited states and ionic states.  相似文献   

9.
We report threshold electron energy-loss spectra for the fluorohalomethanes CF3X (X=Cl,Br). Measurements were made at incident electron energies of 30 and 100 eV in energy-loss range of 4-14 eV, and at scattering angles of 4 degrees and 15 degrees. Several new electronic transitions are observed which are ascribable to excitation of low-lying states as well as are intrinsically overlapped in the molecules themselves. Assignments of these electronic transitions are suggested. These assignments are based on present spectroscopic and cross-section measurements, high-energy scattering spectra, and ab initio molecular orbital calculations. The calculated potential curves along the C-X bond show repulsive nature, suggesting that these transitions may lead to dissociation of the C-X bond. The present results are also compared with the previous ones for CF3H, CF4, and CF3I.  相似文献   

10.
We report electron impact total cross sections, Q(T), for e-N(2)O scattering over an extensive range of impact energies approximately from 0.1 eV to 2000 eV. We employ an ab initio calculation using R-matrix formalism below the ionization threshold of the target and above it we use the well established spherical complex optical potential to compute the cross sections. Total cross section is obtained as a sum of total elastic and total electronic excitation cross sections below the ionization threshold and above the ionization threshold as a sum of total elastic and total inelastic cross sections. Ample cross section data for e-N(2)O scattering are available at low impact energies and hence meaningful comparisons are made. Good agreement is observed with the available theoretical as well as experimental results over the entire energy range studied here.  相似文献   

11.
Integral cross sections and rate coefficients for vibrational excitation of the excited carbon-monoxide molecule, via the (2)Pi shape resonance in the energy region from 0 to 5 eV have been calculated. Cross sections are calculated by using our recently measured cross sections for the ground level CO excitation and the most recent cross sections for elastic electron scattering, applying the principle of detailed balance. Rate coefficients are calculated for Maxwellian electron energy distribution, with mean electron energies below 5 eV. By using extended Monte Carlo simulations, electron energy distribution functions (EEDF) and rate coefficients are determined in nonequilibrium conditions, in the presence of homogeneous external electric field. Nonequilibrium rates are calculated for typical, moderate values of the electric field over gas number density ratios, E/N, from 1 to 220 Td. Maxwellian and nonequilibrium rate coefficients are compared and the difference is attributed to a specific shape of the electron energy distribution functions under considered conditions.  相似文献   

12.
Electron energy loss spectrum, elastic reflectivity and selected vibrational excitation functions were measured by High Resolution Electron Energy Loss Spectroscopy (HREELS) for deuterated nanocrystalline dc GD CVD diamond films. The electron elastic reflectivity is strongly enhanced at about 13 eV, as a consequence of the second absolute band gap of diamond preserved up to the surface for D-nano-crystallites. The pure bending modes δ(CD(x)) at 88 meV and 107 meV are dominantly excited through the impact mechanism and their vibration excitation functions mimic the electron elastic reflectivity curve. Pure diamond phonon mode ν(CC) can be probed through the resolved fundamental loss located at 152 meV and through the multiple loss located at 300 meV. In addition to the well-known 8 eV resonance, two supplementary resonances located at 4.5 eV and 11.5 eV were identified and clearly resolved for the first time. A comprehensive set of data is now available on low-energy electron scattering at hydride terminated polycrystalline diamond films grown either by HF (microcrystalline) or dc GD (nanocrystalline) chemical vapour deposition. The careful comparison of the vibrational excitation functions for hydrogen/deuterium termination stretching modes ν(sp(3)-CH(x)) and ν(sp(3)-CD(x)), for hydrogen termination bending modes δ(CH(x)) mixed with diamond lattice modes ν(CC), for deuterium termination bending modes δ(CD(x)), and for multiple loss 2ν(CC) demonstrates the close interplay between three characteristics: (i) the density-of-states of the substrate, (ii) the vibrational excitation mechanisms (dipolar and/or impact scattering including resonant scattering) and (iii) the surface versus lattice character of the excited vibrational modes. This work shows clearly that excitation function measurement provides a powerful and sensitive tool to clarify loss attributions, involved excitation mechanisms, and surface versus lattice characters of the excited vibrational modes.  相似文献   

13.
A Monte Carlo simulation including surface excitation, Auger electron‐ and secondary electron production has been performed to calculate the energy spectrum of electrons emitted from silicon in Auger electron spectroscopy (AES), covering the full energy range from the elastic peak down to the true‐secondary‐electron peak. The work aims to provide a more comprehensive understanding of the experimental AES spectrum by integrating the up‐to‐date knowledge of electron scattering and electronic excitation near the solid surface region. The Monte Carlo simulation model of beam–sample interaction includes the atomic ionization and relaxation for Auger electron production with Casnati's ionization cross section, surface plasmon excitation and bulk plasmon excitation as well as other bulk electronic excitation for inelastic scattering of electrons (including primary electrons, Auger electrons and secondary electrons) through a dielectric functional approach, cascade secondary electron production in electron inelastic scattering events, and electron elastic scattering with use of Mott's cross section. The simulated energy spectrum for Si sample describes very well the experimental AES EN(E) spectrum measured with a cylindrical mirror analyzer for primary energies ranging from 500 eV to 3000 eV. Surface excitation is found to affect strongly the loss peak shape and the intensities of the elastic peak and Auger peak, and weakly the low energy backscattering background, but it has less effect to high energy backscattering background and the Auger electron peak shape. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

14.
We report calculations of the total (elastic plus inelastic) cross-sections for the e-O system over a wide energy range 10–5000 eV. A local complex optical potential is calculated for the system using the atomic wavefunctions at the Hartree-Fock level. The real part of potential is composed of the attractive static, correlation polarisation and exchange potential. The imaginary component of the complex potential is a function of target charge density, incident electron energy and mean excitation energy. The resulting complex potential is treated in variable phase approach to yield complex phase shifts and total cross-sections. The total and elastic cross-sections are compared with the other available results. The agreement is excellent for total cross-sections with other theoretical work at energies greater than 100 eV. We have excellent agreement for elastic cross-sections with the experimental and theoretical results at all the energies. The elastic differential cross-sections are presented at 50 eV and 1000 eV. We fit the absorption cross-section values to Bethe asymptotic formula in high energy range (≥ 5500 eV). Ionisation cross-sections above 1000 eV are also deduced from the theory.  相似文献   

15.
We report accurate geometries and harmonic force fields for trans- and cis-azobenzene determined by second-order M?ller-Plesset perturbation theory. For the trans isomer, the planar structure with C(2h) symmetry, found in a recent gas electron diffraction experiment, is verified. The calculated vibrational spectra are compared with experimental data and density functional calculations. Important vibrational frequencies are localized and discussed. For both isomers, we report UV spectra calculated using the second-order approximate coupled-cluster singles-and-doubles model CC2 with accurate basis sets. Vertical excitation energies and oscillator strengths have been determined for the lowest singlet n(pi)* and (pi)(pi)* transitions. The results are compared with the available experimental data and second-order polarization propagator (SOPPA) and density functional (DFT) calculations. For both isomers, the CC2 results for the excitation energies into the S(1) and S(2) states agree within 0.1 eV with experimental gas-phase measurements.  相似文献   

16.
A systematic study of vibronic excitation in benzene via forward electron scattering was carried out using a novel type of a trochoidal electron spectrometer. Energy-loss spectra in the energy range 1.0–9.5 eV, with residual energies 0.03–20 eV as well as excitation functions for individual vibrational levels of some of the triplet and singlet states are presented and discussed. Following observations were made. (1) A new s-type Rydberg series with quantum defect δ = 0.86. (2) Additional information on the complex 6–6.5 eV band. (3) A new core excited shape resonance at 6.5 eV. (4) A narrow Feshbach resonance at 5.87 eV, The new spectrometer is suggested as a tool for routine study of forbidden transitions and negative ion states in organic molecules.  相似文献   

17.
Vibrational and electronic excitation by electron impact in p-benzoquinone was studied using a trochoidal electron spectrometer. Two distinct patterns of vibrational excitation were observed. First, low quanta of a few selected vibrations are specifically excited at incident electron energies corresponding to shape resonances. Some resonances excite mainly the CO stretch, others the CH stretch vibration, and this selectivity is used in the discussion of the assignment of the resonances. A second pattern is an unspecific excitation of a quasi-continuum where no structure due to individual vibrational levels can be discerned. This feature peaks at threshold, large amounts of vibrational energy can be deposited in the molecule, and the excitation also proceeds via shape resonances. Electronic excitation spectra in the valence and Rydberg regions are also presented and discussed. A band observed at 4.37 eV with low residual energies has been tentatively assigned to the second π — π* triplet state 3B3g.  相似文献   

18.
We have observed vibrationally excited sulfur hexafluoride molecules in direct inelastic scattering from hot graphite surfaces. The vibrational temperature for the scattered flux has been determined by probing the effect of internal temperature on electron-induced fragmentation observed in mass spectra. The vibrational excitation depends on incident translational energy, Etr, and a maximum temperature increase of 50 K is reached in direct scattering at Etr = 2.5 eV. No effect of surface temperature has been observed at 950–1400 K. Inelastic angular distributions are reproduced by a collision complex model, and the experimental results are related to existing models for vibrational excitation.  相似文献   

19.
Vibrational electron energy loss spectra were measured for propane at incident energies of 3, 6, 10, 15, 20, and 25 eV at scattering angles of 40 degrees, 55 degrees, 70 degrees, 85 degrees, and 100 degrees . The spectra are compared with the results of ab initio calculations using a recently developed two-channel discrete momentum representation method. Good agreement between theory and experiment was found for large scattering angles and energies above the resonant region.  相似文献   

20.
This paper reports on the first measurements of the electron impact electronic excitation cross-sections for carbonyl fluoride, F(2)CO, measured at 30 eV, 10° and 100 eV, 5° scattering angle, while sweeping the energy loss over the range 5.0-18.0 eV. The electronic-state spectroscopy has been investigated and the assignments are supported by quantum chemical calculations. The energy bands above 9.0 eV and the vibrational progressions superimposed upon it have been observed for the first time. Vibronic coupling has been shown to play an important role dictating the nature of the observed excited states, especially for the low-lying energy region (6.0-8.0 eV). New experimental evidence for the 6(1)B(2) state proposed to have its maximum at 12.75 eV according to the vibrational excitation reported in this energy region (11.6-14.0 eV). The n = 3 members of the Rydberg series have been assigned converging to the lowest ionization energy limits, 13.02 eV ((2)B(2)), 14.09 eV ((2)B(1)), 16.10 ((2)B(2)), and 19.15 eV ((2)A(1)) reported for the first time and classified according to the magnitude of the quantum defects (δ).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号