首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The one-photon absorption (OPA) properties of donor-pi-bridge-acceptor-pi-bridge-donor (D-pi-A-pi-D)-type 2,1,3-benzothiadiazoles (BTD) were studied with two dimensional (2D) site and three dimensional (3D) cube representations. The 2D site representation reveals the electron-hole coherence on electronic state transitions from the ground state. The 3D representation shows the orientation of transition dipole moment with transition density, and the charge redistribution on the excited states with charge difference density. In this paper, we further developed the 2D site and 3D cube representations to investigate the two-photon absorption (TPA) properties of D-pi-A-pi-D-type BTD on electronic transitions between excited states. With the new developed 2D site and 3D cube representations, the orientation of transition dipole moment, the charge redistribution, and the electron-hole coherence for TPA of D-pi-A-pi-D-type BTD on electronic state transitions between excited states were visualized, which promote deeper understanding to the optical and electronic properties for OPA and TPA.  相似文献   

2.
用含时的密度泛函(TD—DFT)方法研究了低带隙的中性和带电的交替共聚芴Green 1),该化合物是由烷染取代芴和(1,2,5-噻吩基-3,4-硫重氮基)喹喔啉噻吩(T—TDQ—T)单元交替重复组成,对他们的激发态特性用二维(2D)和三维(3D)实空间分析方法做了进一步分析.对于中性的Green 1,分别得到其带隙、键能、激子结合能和核驰豫能.用3D跃迁密度方法对中性和带电的Green 1的跃迁偶极矩进行比较可显示出跃迁偶极矩的取向和强度;用3D电荷差异密度方法显示出激发后的中性和带电的Green 1电荷重新分布和比较,用2D实空间分析方法(跃迁密度矩阵)来研究中性和带电的Green 1处于激发态时的电子空穴相干性.中性Green 1的激发态特性分别用TD—DFT和ZINDO两种方法进行了计算,比较得出电子-电子相互作用(在TD—DFT中)对激发态性质的重要影响.  相似文献   

3.
本文设计合成了两个典型的共轭的电子给体与电子受体(D-A)化合物:2-三氰基乙烯基蒽(2-TCVA)与9-三氰基乙烯基蒽(9-TCVA),通过极性效应,温度效应对它们基态与激发态的光谱行为进行了表征。研究表明:这两个化合物均表现出显著的电荷转移(CT)吸收峰,分子受光激发后,9-TCVA只能在非极性溶剂中产生分子内电荷转移(ICT)态荧光,而2-TCVA在极性与非极性溶剂中都能从ICT态发光。另外,温度效应显示冻结态下,2-TCVA只发射ICT态荧光,而9-TCVA既发射类蒽(anthracene-like)荧光又发射ICT态荧光,造成这一现象的主要原因可能是2-TCVA与9-TCVA分子平面性上的差异而引起分子内电荷转移相互作用不同所致。文中还利用了Bilot-Kawski公式估算了化合物2-TCVA在激发态与基态时偶极矩的差值为18.8D。  相似文献   

4.
We study the effects of symmetry breaking on the photogenerated intramolecular charge transfer (CT) state of 9,9'-bianthryl (BA) with femtosecond time-resolved near-IR spectroscopy. The time-resolved near-IR spectra are measured in acetonitrile for a symmetric substituted derivative of 10,10'-dicyano-9,9'-bianthryl (DCBA) and asymmetric substituted derivatives of 10-cyano-9,9'-bianthryl (CBA) and 9-(N-carbazolyl)anthracene (C9A), as well as nonsubstituted BA. The transient near-IR absorption spectrum of each compound at 0 ps has a locally excited (LE) absorption band, which agrees with the transient absorption band of the corresponding monomer unit. At 3 ps after the photoexcitation, the symmetric compounds show a broad charge transfer (CT) absorption band, whereas no absorption peak appears in the spectra of the asymmetric compounds. The broad CT absorption at 1250 nm only observed for the symmetric compounds can be attributed to the charge resonance transition associated with two equivalent charge separated states.  相似文献   

5.
The synthesis of a new, noncovalent anthracene-dimethylaniline dyad (ensemble I) held together via guanosine-cytidine Watson-Crick base-pairing interactions is reported. Upon excitation at 420 nm, photoinduced electron-transfer from the dimethylaniline donor to the singlet excited state of the anthracene acceptor occurs, as inferred from a combination of time-resolved fluorescence quenching and transient absorption measurements. In toluene at room temperature, the rate constants for photoinduced intraensemble electron-transfer and subsequent back-electron-transfer (charge recombination) are k(CS) = (3.5 +/- 0.03) x 10(10) s(-1) and k(CR) = (1.42 +/- 0.03) x 10(9) s(-1), respectively.  相似文献   

6.
The ground and excited state properties of the 60fullerene, diphenylbenzothiadiazole-triphenylamine (PBTDP-TPA) dyad and fullerene-diphenylbenzothiadiazole-triphenylamine (fullerene-PBTDP-TPA) triad were investigated theoretically using density functional theory with B3LYP functional and 3-21G basis et and time-dependent density functional theory with B3LYP functional and STO-3G basis set as well as 2D and 3D real space analysis methods. The 2D site representation reveals the electron-hole coherence on excitation. The 3D transition density shows the orientation and strength of the transition dipole moment, and the 3D charge difference density gives the orientation and result of the intramolecular charge transfer. Also, photoinduced intermolecular charge transfer (ICT) in PBTDP-TPA-fullerene triad are identified with 2D and 3D representations, which reveals the mechanisms of ICT in donor-bridge-acceptor triad on excitation. Besides that we also found that the direct superexchange ICT from donor to acceptor (tunneling through the bridge) strongly promotes the ICT in the donor-bridge-acceptor triad.  相似文献   

7.
Substitution of non-fluorescent phthalide (Pd) with amino group at meta (6) position in relation to the electron-accepting part of the lactone ring completely changes Pd photophysics: a new long-wavelength absorption band arises and the molecule becomes highly fluorescent. The experimental data and the analysis of vertical electronic transitions with TDDFT method indicate that the first absorption band in 6-aminophthalides (6-APds) comprises a single CT transition to the S1 state. Almost equal absorption and emission transition dipole moments indicate that S0 <--> S1 transition in all 6-APds is not affected by any mixing with other electronic states, the excited-state vibrational relaxation is not accompanied by significant conformational changes and the Stokes shifts reflect mainly solvation energetics of these molecules. Excited state dipole moments obtained from solvatochromic plots and from CASSCF calculations confirm large charge displacement from amino group towards the meta position of the benzene ring upon excitation of 6-APds to S1 state. Long fluorescence lifetimes and high fluorescence quantum yields demonstrate efficient and stable excited state charge separation in 6-APds. Taken together with sensitivity of 6-APds to polarity and proticity of the environment these properties make them good candidates for fluorescent probes of long-time scale molecular dynamics.  相似文献   

8.
Benzothiazole is among prominent electron-withdrawing heteroarene moieties used in a variety of π-conjugated molecules. Its relative orientation with respect to the principal dipole vector(s) of chromophores derived thereof is crucial, affecting photophysical and nonlinear optical properties. Here we compare the photophysics and ultrafast dynamics of dipolar and octupolar molecules comprising a triphenylamine electron-donating core, ethynylene π-conjugated linker(s) and benzothiazole acceptor(s) having the matched or mismatched orientation (with respect to the direction of intramolecular charge transfer), while a carbaldehyde group is attached as an auxiliary acceptor. Among chromophores without the auxiliary acceptor, stronger fluorescence solvatochromism and faster excited state dynamics are exhibited for the derivatives with the mismatched geometry. On the contrary, introduction of the auxiliary acceptor to the benzothiazole unit enhances the intramolecular charge transfer ICT (featuring ultrafast dynamics of the excited state) for the matched geometry. The data confirm the crucial role of the relative orientation of asymmetric heteroaromatic unit (regioisomeric effect) in dipolar as well as in multipolar molecules in tuning linear and nonlinear optical properties as well as excited state dynamics.  相似文献   

9.
The ground and excited state properties of two regions in the Δ15-configurational space of the phycoviolobilin chromophore in the α-subunit of phycoerythrocyanin are analyzed. Molecular dynamics calculations reveal that the chromophore geometry determines the active-site dynamics. The excited state torsional potential surface shows a negative barrier for isomerization and trapping of an activated complex. Strong coupling of excited states localized in the chromophore and charge transfer states from the surrounding polar residues provides favorable prerequisites for fast excited state surface crossing in competition with other deactivation processes. The formation of a photoreduced intermediate following the photoinduced charge transfer may trigger subsequent chemical reactions.  相似文献   

10.
A series of donor-acceptor (D−A) macrocyclic dyads consisting of an electron-poor perylene bisimide (PBI) π-scaffold bridged with electron-rich α-oligothiophenes bearing four, five, six and seven thiophene units between the two phenyl-imide substituents has been synthesized and characterized by steady-state UV/Vis absorption and fluorescence spectroscopy, cyclic and differential pulse voltammetry as well as transient absorption spectroscopy. Tying the oligothiophene strands in a conformationally fixed macrocyclic arrangement leads to a more rigid π-scaffold with vibronic fine structure in the respective absorption spectra. Electrochemical analysis disclosed charged state properties in solution which are strongly dependent on the degree of rigidification within the individual macrocycle. Investigation of the excited state dynamics revealed an oligothiophene bridge size-dependent fast charge transfer process for the macrocyclic dyads upon PBI subunit excitation.  相似文献   

11.
A series of coronenetetraimide (CorTIm)‐centered cruciform pentamers containing multiporphyrin units, in which four porphyrin units are covalently linked to a CorTIm core through benzyl linkages, were designed and synthesized to investigate their structural, spectroscopic, and electrochemical properties as well as photoinduced electron‐ and energy‐transfer dynamics. These systems afforded the first synthetic case of coroneneimide derivatives covalently linked with dye molecules. The steady‐state absorption and electrochemical results indicate that a CorTIm and four porphyrin units were successfully characterized by the corresponding reference monomers. In contrast, the steady‐state fluorescence measurements demonstrated that strong fluorescence quenching relative to the corresponding monomer units was observed in these pentamers. Nanosecond laser flash photolysis measurements revealed the occurrence of intermolecular electron transfer from triplet excited state of zinc porphyrins to CorTIm. Femtosecond laser‐induced transient absorption measurements for excitation of the CorTIm unit clearly demonstrate the sequential photoinduced energy and electron transfer between CorTIm and porphyrins, that is, occurrence of the initial energy transfer from CorTIm (energy donor) to porphyrins (energy acceptor) and subsequent electron transfer from porphyrins (electron donor) to CorTIm (electron acceptor) in these pentamers, whereas only the electron‐transfer process from porphyrins to CorTIm was observed when we mainly excite porphyrin units. Finally, construction of high‐order supramolecular patterning of these pentamers was performed by utilizing self‐assembly and physical dewetting during the evaporation of solvent.  相似文献   

12.
Intramolecular charge transfer (ICT) behavior of trans-ethyl p-(dimethylamino)cinamate (EDAC) in various solvents has been studied by steady-state absorption and emission, picosecond time-resolved fluorescence spectroscopy and femtosecond transient absorption experiments as well as time-dependent density functional theory (TDDFT). Large fluorescence spectral shift in more polar solvents indicates an efficient charge transfer from the donor site to the acceptor moiety in the excited state compared to the ground state. The energy for 0,0 transition (ν0,0) for EDAC shows very good linear correlation with static solvent dielectric property. The relaxation dynamics of EDAC in the excited state can be effectively described by a “three state” model where, the locally excited (LE) state converts into the ICT state within 350 ± 100 fs. A combination of solvent reorganization and intramolecular vibrational relaxation within 0.5–6 ps populates the relaxed ICT state which undergoes fluorescence decay within few tens to hundreds of picoseconds.  相似文献   

13.
A donor acceptor substituted aromatic system 5-(4-dimethylamino-phenyl)-penta-2,4-dienoic acid (DMAPPDA) has been synthesized and its spectral properties have been explored on the basis of steady state absorption and fluorescence spectroscopy. Spectral features point largely towards a possible occurrence of photoinduced intramolecular charge transfer process from the donor NMe2 group to the acceptor acid group. Solvent dependency of the large Stokes' shifted emission band and the calculated large excited state dipole moment support the polar character of the charge transfer excited state. Quantum yield calculations and effect of addition of acid and base on the steady state spectra were also performed to further scrutinize the excited state CT character.  相似文献   

14.
刘涛  魏用刚  袁燕秋  郭庆祥 《中国化学》2005,23(10):1430-1436
A series of N-bonded donor-acceptor derivatives of phenothiazine containing phenyl (PHPZ), anisyl (ANPZ), pyridyl (PYPZ), naphthyl (NAPZ), acetylphenyl (APPZ), and cyanophenyl (CPPZ) as an electron acceptor have been synthesized. Their photophysical properties were investigated in solvents of different polarities by absorption and emission techniques. These studies clearly revealed the existence of an intramolecular charge transfer (ICT) excited state in the latter four compounds. The solvent dependent Stokes shift values were analyzed by the modified Lippert-Mataga equation to obtain the excited state dipole moment values. The large excited state dipole moment suggests that the full (or nearly full) electron transfer take place in the A-D systems. In the system of A-D phenothiazine derivatives, the transition dipole moments Mflu were determined mainly by direct interactions between the solvent-equilibrated fluorescence ^1CT state and ground state because of their lack of significant change with increase of the solvent polarity. The electron structure and molecular conformation of phenothiazine derivatives will be significantly changed with the increase of the electron affinity of the N-10 substituent.  相似文献   

15.
A combined theoretical and experimental study of the structure, optical, and photophysical properties of four 2,7-carbazolenevinylene-based derivatives in solution is presented. Geometry optimizations of the ground states of PCP, PCP-CN, TCT, and TCT-CN were carried out using the density functional theory (DFT/B3LYP/6-31G*). It is found that PCP and TCT are nearly planar in their ground electronic states (S0), whereas the cyano derivatives are more twisted. The nature and the energy of the first singlet-singlet electronic transitions have been obtained from time-dependent density functional theory (TDDFT) calculations performed on the optimized geometries. For all the compounds, excitation to the S1 state corresponds mainly to the promotion of one electron from the highest-occupied molecular orbital to the lowest-unoccupied molecular orbital, and the S1 <-- S0 electronic transition is strongly allowed and polarized along the long axis of the molecular frame. The optimization (relaxation) of the first singlet excited electronic state (S1) has been done using the restricted configuration interaction (singles) (RCIS/6-31G*) approach. It is observed that all four investigated compounds become more planar in their S1 relaxed excited state. Electronic transition energies from the relaxed excited states have been obtained from TDDFT calculations performed on the S1-optimized geometries. The absorption and fluorescence spectra of the carbazolenevinylenes have been recorded in chloroform. A good agreement is obtained between TDDFT vertical transitions energies and the (0,0) absorption and fluorescence bands. The change from phenylene to thiophene rings as well as the incorporation of cyano substituents induce bathochromic shifts in the absorption and fluorescence spectra. From the analysis of the energy of the frontier molecular orbitals, it is believed that thiophene rings and CN substituents induce some charge-transfer character to the first electronic transition, which is responsible for the red shifts observed. Finally, the fluorescence quantum yield and the lifetime of the compounds in chloroform have been obtained. In sharp contrast with many oligothiophenes, it is observed that TCT possesses a high fluorescence quantum yield. On the other hand, the CN-containing derivatives exhibit much lower fluorescence quantum yields, probably due to the combined influence of steric effects and charge-transfer interactions caused by the cyano groups.  相似文献   

16.
The complexing properties of the calix[4]arene having two anthracene moieties at the upper rim toward transition metal ions and their photo-physical properties have been studied. The presence of a Schiff Base unit allows the chelation of transition metal cations such as Cu2+, Co3+, which leads to a weakening of the charge transfer process in the absorption spectrum and to an enhancement of the fluorescence of the anthracene moiety.  相似文献   

17.
As an excellent artificial photosynthetic reaction center, the carotene (C)‐porphyrin (P)‐fullerene (F) triad was extensively investigated experimentally. To reveal the mechanism of the intramolecular charge transfer (ICT) on the mimic of photosynthetic solar energy conversion (such as singlet energy transfer between pigments, and photoinduced electron transfer from excited singlet states to give long‐lived charge‐separated states), the ICT mechanisms of C‐P‐F triad on the exciton were theoretically studied with quantum chemical methods as well as the 2D and 3D real space analysis approaches. The results of quantum chemical methods reveal that the excited states are the ICT states, since the densities of HOMO are localized in the carotene or porphyrin unit, and the densities of LUMO are localized in the fullerene unit. Furthermore, the excited states should be the intramolecular superexchange charge transfer (ISCT) states for the orbital transition from the HOMO whose densities are localized in the carotene to the LUMO whose densities are localized in the fullerene unit. The 3D charge difference densities can clearly show that some excited states are ISCT excited states, since the electron and hole are resident in the fullerene and carotene units, respectively. From the results of the electron‐hole coherence of the 2D transition density matrix, not only 3D results are supported, but also the delocalization size on the exciton can be observed. These phenomena were further interpreted with non‐linear optical effect. The large changes of the linear and non‐linear polarizabilities on the exciton result in the charge separate states, and if their changes are large enough, the ICT mechanism can become the ISCT on the exciton.  相似文献   

18.
Jeongsik Kim  Hiroshi Nakamura 《Tetrahedron》2008,64(47):10735-10740
Both twisted intramolecular charge transfer (TICT) and photoinduced electron transfer (PET) relaxation processes of N-phenyl-9-anthrylcarboxamide derivatives can be characterized by modified substitution of the phenyl group. Introduction of a methoxy group to phenyl moiety quenched fluorescence of the anthracene using TICT or PET process, and was not retrieved even using highly viscous media. The introduction of a methylene unit induced fluorescence emissions using a solvent with both viscosity and polarity. This phenomenon demonstrates that the effects of both TICT and PET are involved in this system. Based on these data, we synthesized a novel crown ether derivative 7: its analytical usefulness as a fluorescent chemosensor for alkaline earth metal ions is reported herein.  相似文献   

19.
9-(N,N-Dianisylamino)anthracene (9DAAA), 9-(N,N-dianisylamino)dinaphth([1,2-a:2'-1'-j]-anthracene (9DAAH), and 9,10-bis(N,N-dianisylamino)anthracene (910BAA) were synthesized as highly twisted triarylamines with potential for photoexcited internal charge transfer. Crystallography of 9DAAA shows its dianisylamino group to be twisted nearly perpendicular to its anthracene unit, similar to a report for 910BAA. The solution fluorescence spectra show strong bathochromic shifts for each of the three molecular systems with strongly decreased quantum efficiency in higher polarity solvents. Solution-phase (ensemble) time-resolved photoluminescence measurements show up to 4-fold decreases in fluorescence lifetime in acetonitrile compared to hexane. The combined results are consistent with photoinduced, transient intramolecular charge-transfer from the bis-anisylamine unit to the polycyclic aromatic unit. Computational modeling is in accord with intramolecular transfer of electron density from the bis-anisylamino unit to the anthracene, based on in comparisons of HOMO and LUMO.  相似文献   

20.
Optical physical properties of neutral and charged quinquethiophene monomer, and neutral and cationic pi-dimeric quinquethiophenes were investigated with density functional theory as well as the two dimensional (2D) site (transition density matrix) and three dimensional (3D) cube (transition density and charge difference density) representations, stimulated by the recent experimental report [T. Sakai et al., J. Am. Chem. Soc. 127, 8082 (2005)]. Transition density shows the orientation and strength of the transition dipole moment of neutral and charged quinquethiophene monomer, and charge difference density reveals the orientation and result of the charge transfer in neutral and charged quinquethiophene monomer. To study if coupling exciton and oscillation of electron-hole pair exist in neutral and cationic pi-dimeric quinquethiophenes, the coupling constants J (coupling exciton of electron-hole pair) and K (coupling oscillation of electron-hole pair) were introduced to the exciton coordinate and momentum operators, respectively, and the 2D and 3D analysis methods were further developed by extending our previous theoretical methods [M. T. Sun, J. Chem. Phys. 124, 054903 (2006)]. With the new developed 2D and 3D analysis methods, we investigated the excited state properties of neutral and cationic pi-dimeric quinquethiophenes, especially on the coupling exciton and oscillation of electron-hole pair between monomers. The 2D results show that there is neither coupling exciton (J=0) nor oscillation (K=0) of electron-hole pair in neutral pi-dimeric quinquethiophenes. For some excited states of cationic pi-dimeric quinquethiophenes, there is no coupling exciton (J=0), but there is coupling oscillation (K not equal0); while for some excited states, there are both coupling exciton and coupling oscillator simultaneously (J not equal0 and K not equal0). The strength of transition dipole moments of pi-dimeric quinquethiophenes were interpreted with 3D transition density, which reveals the orientations of their two subtransition dipole moments. The 3D charge transition density reveals the orientation and result of intermonomer and/or intramonomer charge transfer. The calculated results reveal that excited state properties of neutral pi-dimeric quinquethiophene are significantly different from those of the cationic pi-dimeric quinquethiophenes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号