首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Similarities and differences in the chemical properties of lanthanides, actinides, and transactinides are analyzed. The general tendency of the change in the thermodynamic properties of trivalent lanthanides and actinides is established. The validity of the hypothesis of the pair analogy of trivalent lanthanides and actinides is revised. The oxidation-reduction properties of actinides and transactinides Pu–Hs and Np–Bh are compared.  相似文献   

2.
The separation of lanthanides from minor actinides such as americium and curium is an important step during the recycling process in the treatment of nuclear waste. However, the similar chemistry and ionic size of lanthanide and actinide ions make the separation challenging. Here, we report that a peptide-based reagent can selectively bind trivalent actinides over trivalent lanthanides by means of introducing soft-donor atoms into a peptide known as a lanthanide-binding tag (LBT). Fluorescence spectroscopy has been used to measure the dissociation constant of each metal/peptide complex. A 10-fold selectivity was obtained for Am(3+) over the similarly sized lanthanide cation, Nd(3+), when the asparagine on the fifth position of a LBT was mutated to a cysteine and further functionalized by a pyridine moiety.  相似文献   

3.
The adsorption behaviors of trivalent actinides and lanthanides on pyridine resin in lithium chloride aqueous solution were investigated. The adsorbed amounts of lanthanides and the degree of mutual separation of lanthanides increased with an increase in the concentration of lithium chloride in aqueous solution. The group separation of the trivalent actinides and lanthanides was observed. This separation phenomenon is similar in a hydrochloric acid solution. However, the adsorption behavior of lanthanides in lithium chloride is different from their behavior in a hydrochloric acid solution. This fact shows that the adsorption mechanisms of lanthanides in a lithium chloride aqueous solution and in a hydrochloric acid solution are different; the adsorption mechanisms are attributed to the ion exchange in a hydrochloric acid solution, and to the complex formation with pyridine group in a lithium chloride solution.  相似文献   

4.
CMPO/TBP sorbed on Amberlite XAD7 resin was used for the separation of actinides and lanthanides from nitric acid solutions by extraction chromatography. The distribution ratios of actinides and lanthanide fission products (Ce, Eu) as a function of acid concentration and some complexing agents were determined. In strong HNO3 medium (>1 mol/l) the tri-, tetra- and hexavalent actinides as well as the lanthanides have shown great affinity for the CMPO/TBP/XAD7 sorbent. The same behavior was found in HCl medium except for trivalent actinides and lanthanides which show lower distribution values in the same acid range. The effect of some complexing agents as DTPA and ammonium oxalate were also investigated. In DTPA only hexavalent actinides showed higher distribution value. On the basis of these differences, an alternative procedure for actinide-lanthanide separation and actinides from each other is proposed.  相似文献   

5.
Extraction of trivalent lanthanides and actinides by primary amines from nitric acid solution in presence of potassium phosphotungstate (K10P2W17O61) has been investigated. The effect of nitric acid, potassium phosphotungstate and extractant concentrations, of the organic solvents and the length of primary amine alkyl chain has been studied. Primary amines in chloroform can be used for separtion of lanthanides and actinides and their group isolation.  相似文献   

6.
Extraction of the trivalent actinides Am, Cm and Cf and lanthanides Eu, Tb, Tm and Lu has been studied with 1-phenyl-3-methyl-4-trifluoroacetyl pyrazolone- 5(HPMTFP) in chloroform and benzene. The formation of a self-adduct species M(PMTFP)3·HPMTFP has been observed with Am, Cm and Eu but only the chelate species M(PMTFP)3 with Cf, Tb, Tm and Lu. The reasons for the formation of a self-adduct species with lighter actinides and lanthanides and not with the heavier ones of the pyrazolones have been discussed.  相似文献   

7.
The separation of trivalent actinides and lanthanides was studied by using newly developed tertiary pyridine-type anion-exchange resin embedded in silica beads. Chromatographic elution experiments were carried out by using a packed column of the new resin and methanol-hydrochloric acid solution as an effluent. We confirmed that the actinides were eluted well from the elution bands of lanthanides. Actinides and lanthanides were eluted according to the reverse order of their atomic number.  相似文献   

8.
The separation of trivalent actinides from trivalent lanthanides present in used nuclear fuel can be achieved by using solvent extraction and the BTBP class of ligands. This separation is relevant for the advanced reprocessing of the used fuel. The choice of diluents in such BTBP based systems has shown to affect the extraction as well as the separation. Long chained alcohols have previously been investigated as such diluents, showing that the americium extraction is higher into alcohols having shorter chains (hexanol, and heptanol) than in longer chained ones (nonanol and decanol). In this work it is shown that not only the distribution ratio, but also the contact time needed before reaching extraction equilibrium is shorter when using shorter chain length of the alcohol diluent. It is also shown that the rate of extraction can be correlated to the interfacial tension between the diluent and the aqueous phase. A low interfacial tension gives a fast extraction while an extraction system with higher interfacial tension needs a longer time of phase contact in order to reach extraction equilibrium.  相似文献   

9.
The aim of this work is to assess the effect of ligand strength, symmetry, and coordination number on solid solution formation of trivalent actinides and lanthanides in carbonate and sulfate minerals. This is of particular importance in radionuclide migration where trivalent actinides such as Pu, Am, and Cm are responsible for the majority of radiotoxicity after 1000 years. Time-resolved laser fluorescence spectroscopy was used to study trace concentrations of the dopant ion after interaction with the mineral phase. This study expands on previous work with aragonite and gypsum where it was found that aragonite incorporates Eu(3+) and Cm(3+) while only surface sorption is observed in gypsum. This study uses isostructural minerals strontianite (SrCO(3)) and celestite (SrSO(4)) to decouple the effect of structure from that due to the anion. It is demonstrated that while distribution coefficients can predict the amount of dopant ion associated with the mineral phase, they do not have any correlation with solid solution formation. This substitution mechanism is most likely dictated by the symmetry of the site being substituted and the electronic structure of the dopant atom.  相似文献   

10.
The thermodynamic parameters ΔF, ΔH and ΔS of the complexes of Cm(III), C(III) and Tm(III) with the SCN? ion have been determined at 30°C in ammonium ion medium of unit ionic strength by the temperature variation method. It has been concluded that both the thiocyanate complexes of trivalent actinides and lanthanides are predominantly inner-sphere type. The higher stability of the second complexes of trivalent actinides is reflected either in the enthalpy or the entropy change depending on the degree of hydration of the trivalent actinide ions. The implications of the greater free energy change for PuSCN2+ as compared with other trivalent actinide or lanthanide first thiocyanate complexes are discussed.  相似文献   

11.
Sorption Characteristics of Radioeuropium on Bentonite and Kaolinite   总被引:6,自引:0,他引:6  
The factors affecting the sorption of radioeuropium(III) by bentonite and kaolinite were studied with the aim to assess the important factors which should be included in modeling of radioeuropium(III) migration in soils and sediments. Europium(III) is an analogue of trivalent actinides. The distribution coefficients of radioeuropium for sorption on bentonite and kaolinite from aqueous solutions were determined by using the batch method, and it was found that they were sensitive to the loading, the pH, the humic substance and the sorption direction. Thus, these sorption characteristics of radioeuropium on bentonite and kaolinite were found to be different from those of radiocobalt1, and the mathematical modeling of trivalent lanthanides and actinides migration will be more complicated than that of radiocobalt. It is improbable that the migration modeling with a constant distribution coefficient will be successful in the case of trivalent lanthanides and actinides.  相似文献   

12.
《中国化学快报》2022,33(7):3429-3434
Separation of the minor actinides (Am and Cm) from lanthanides in high-level liquid wastes (HLLW) is one of the most challenging chemical separation tasks known owing to their chemical similarities and is highly significant in nuclear fuel reprocessing plants because it could practically lead to sustainable nuclear energy by closing the nuclear fuel cycle. The solid phase extraction is proposed to be a possible strategy but all reported sorbent materials severely suffer from limited stability and/or efficiency caused by the harsh conditions of high acidity coupled with intense irradiation. Herein, a phenanthroline-based polymeric organic framework (PhenTAPB-POF) was designed and tested for the separation of trivalent americium from lanthanides for the first time. Due to its fully conjugated structure, PhenTAPB-POF exhibits previously unachieved stability under the combined extreme conditions of strong acids and high irradiation field. The americium partitioning experiment indicates that PhenTAPB-POF possesses an ultrahigh adsorption selectivity towards Am(III) over lanthanides (e.g., SFAm(III)/Eu(III) = 3326) in highly acidic simulated HLLW and relatively fast adsorption kinetics in both static and dynamic experiments. Am(III) can be almost quantitatively eluted from the PhenTAPB-POF packed-column using a concentrated nitric acid elution. The high stability and superior separation performance endow PhenTAPB-POF with the promising alternative for separating minor actinides over lanthanides from highly acidic HLLW streams.  相似文献   

13.
The combination of lipophilic macrocyclic oxygen donors with the extractant thenoyltrifluoroacetone /HTTA/ has been shown to have a significant synergistic effect on the extractions of trivalent actinides and lanthanides. The results show that the nitrogen containing cryptand /222BB/ is a more effective synergist than the crown ether compound /15-C-5/ with only oxygen donors.  相似文献   

14.
The distribution of lanthanides and actinides in a two-phase liquid system obtained by mixing an aqueous solution of poly(ethylene glycol) and ammonium sulfate has been studied as a function of pH. Conditions are reported which provide the heterogeneity of the system suggested. It is shown that thorium and plutonium can be separated from transplutonium elements and lanthanides. Conditions have been chosen for quantitative group extraction of actinides and lanthanides.  相似文献   

15.
董雪  徐超  陈靖 《化学通报》2020,83(4):289-295
镅离子在溶液中主要以三价形式(Am(III))存在,因其离子半径与三价镧系离子Ln(III)接近,化学特性相似,使得Am(III)与Ln(III)的有效分离被认为是核燃料循环领域最具挑战性的课题之一。利用镅的多价态特性,采用不同氧化方法可将Am(III)氧化成高价态的AmO_2~+和AmO_2~(2+)形式,再通过溶剂萃取、沉淀等方法进行分离,是实现Am与Ln分离的一种新思路。本文综述了不同氧化方法对水溶液环境中Am(III)的氧化分离研究进展,描述了相关机理,指出了不同氧化方法的优劣并展望了未来发展趋势,以期为发展新型镧系与锕系元素分离技术提供参考。  相似文献   

16.
Off-line and on-line studies have been performed with radioactive tracers of various elements to develop a chemical separation procedure for bohrium (element 107). The proposed procedure is intended for use in the fast solvent extraction system SISAK. The homologs technetium and rhenium were used to model the chemical behavior of bohrium. The results show that high decontamination factors can be obtained for technetium and rhenium with respect to unwanted contaminants like trivalent actinides, polonium and the Group 5 elements.  相似文献   

17.
A new hydrometallurgical grouped actinide extraction process has been developed to separate the transuranic actinide ions from dissolved spent fuel solution (after an initial uranium extraction cycle). This “EURO-GANEX” process is aimed towards the homogeneous recycling of plutonium and minor actinides in a future closed fuel cycle. The separation process is based on the co-extraction of actinides and lanthanides from aqueous nitric acid into an organic phase followed by selective co-stripping of actinides. A suitable organic phase has been formulated and distribution ratios determined for lanthanides, actinides and some problematic fission products under extraction and stripping conditions. The process flowsheet has been proven on surrogate feed solutions as well as with spent fast reactor fuel; excellent recoveries of the actinides and good decontamination factors from the lanthanides and other fission products were obtained. A variation on the EURO-GANEX flowsheet (the “TRU-SANEX” process) has now been designed to produce separate Pu+Np and Am+Cm products for heterogeneous recycling. Progress on underpinning process chemistry and safety studies as well as flowsheet tests are summarized.  相似文献   

18.
An on-line method developed for separating plutonium and americium was developed. The method is based on the use of HPLC pump with three analytical chromatographic columns. Plutonium is reduced throughout the procedure to trivalent oxidation state, and is recovered in the various separation steps together with americium. Light lanthanides and trivalent actinides are separated with TEVA resin in thiocyanate/formic acid media. Trivalent plutonium and americium are pre-concentrated in a TCC-II cation-exchange column, after which the separation is performed in CS5A ion chromatography column by using two different eluents. Pu(III) is eluted with a dipicolinic acid eluent, and Am(III) with oxalic acid eluent. Radiochemical and chemical purity of the eluted plutonium and americium fractions were ensured with alpha-spectrometry.  相似文献   

19.
The reactions of trivalent lanthanides and actinides with molten boric acid in high chloride concentrations result in the formation of M4[B16O26(OH)4(H2O)3Cl4] (M=Sm, Eu, Gd, Pu, Am, Cm, Cf). This cubic structure type is remarkably complex and displays both chirality and polarity. The polymeric borate network forms helical features that are linked via two different types of nine‐coordinate f‐element environments. The f–f transitions are unusually intense and result in dark coloration of these compounds with actinides.  相似文献   

20.
We have investigated the complexation behavior of preorganized 1,10-phenanthroline-2,9-dicarboxylic acid (PDA) based ligands with trivalent lanthanides and actinides using density functional theory with various GGA type exchange-correlation functionals and different basis sets. New ligands have been designed from PDA through functionalization with soft donor atoms such as sulfur, resulting in mono-thio-dicarboxylic acids (TCA/TCA1) and di-thio-dicarboxylic acid (THIO). It has been found that selectivity in terms of complexation energy of actinides over lanthanides is the maximum with TCA1 where the metal-ligand binding is through the O atoms. This unusual feature where a softer actinide metal ion is bonded strongly with hard donor oxygen atoms has been explained using the popular chemical concepts, viz., Pearson's Hard-Soft-Acid-Base (HSAB) principle and the frontier orbital theory of chemical reactivity as proposed by Fukui. Detailed analysis within the framework of the HSAB principle indicates that the presence of softer nitrogen atoms in the phenanthroline moiety (which also act as donors to the metal ion) has a profound influence in changing the soft nature of the actinide ion, which in turn binds with the hard oxygen atoms in a stronger way as compared to the valence isoelectronic lanthanide ion. Also, the trends in the variation of calculated values of the metal-ligand bond distances and the corresponding complex formation energies have been rationalized using the Fukui reactivity indices corresponding to the metal ions and the donor sites. All the calculations have also been done in the presence of solvent. The "intra-ligand synergistic effect" demonstrated here for PDA or TCA1 with soft and hard donor centers might be very important in designing new ligands for selective extraction of various metal ions in a competitive environment. However, for TCA and THIO ligands with only soft donor centers, "intra-ligand synergism" may not be very efficient although reports are available demonstrating soft-soft inter-ligand synergism. Nevertheless, in the case of TCA and THIO complexes, a shorter Am-S bond distance in conjunction with lower metal ion charge and a higher percentage of orbital interaction energy corroborate the presence of a higher degree of covalency in Am-S bonds, which in turn may be responsible for selectivity towards Am(3+).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号