首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 656 毫秒
1.
The reactions of nitrogen dioxide (NO(2)) were investigated on oxidized Mo(110) containing both chemisorbed oxygen and a thin film oxide. NO(2) reacts on both oxidized Mo(110) surfaces via a combination of reversible adsorption and reduction to NO, N(2), and trace amounts of N(2)O below 200 K. On the surface containing chemisorbed O, there is some complete dissociation of NO(2) to yield N(a) and O(a). N(2) forms at high temperatures through atom combination. On both surfaces, NO is the predominant product of NO(2) reduction. However, the chemisorbed layer which has a low oxidation state, and hence a greater capacity to accept oxygen, more effectively reduces NO(2). The selectivity for N(2) formation over N(2)O is greater for NO(2) as compared with NO on both surfaces studied. The selectivity changes are largely attributed to an increase in the concentration of Mo=O species and a change in the distribution of oxygen on the surface. Notably, more oxygen, in particular Mo=O moieties, is deposited by NO(2) reaction than by O(2) reaction, indicating that NO(2) is a stronger oxidant. The fact that there are several N-containing species on the surface at low temperatures may also affect the product distribution. On both surfaces, N(2)O(4), NO(2), and NO are identified by infrared spectroscopy upon adsorption at 100 K. All N(2)O(4) desorbs by 200 K, leaving only NO(2) and NO on the surface. Infrared spectroscopy of NO(2) on (18)O-labeled surfaces provides evidence for oxygen transfer or exchange between different types of sites even at low temperatures.  相似文献   

2.
采用广义梯度密度泛函理论结合周期平板模型方法, 在DNP基组下, 研究了NO双分子在三重态和单重态两种电子组态下在Cu2O(111)完整表面的吸附情况. 考虑了Cu+(NO)(NO)、Cu+(NO)(ON)及Cu+(ON)(ON)这三种构型, 计算了它们的吸附能和Mulliken电荷, 分析并预测了吸附后可能产生的物种. 结果表明, 当两个NO分子都以O端吸附在Cu2O(111)表面时即Cu+(ON)(ON)构型, N—N键长很短, 只有124.4 pm, 吸附的两个NO分子形成了二聚体形式, 这种吸附构型有利于进一步离解产生N2或N2O并形成Cu-O表面物种.  相似文献   

3.
The geometric and electronic structures of FeS(2) (100) surface have been studied by a quantum-mechanical calculation using a total-energy pseudopotential code, CASTEP. The (100) surface is very stable and does not give any significant geometric relaxation. The electronic structure of FeS(2) (100) surface is characterized by the appearance of new native surface states in the bulk band gap, which correspond to antibonding mixed Fea-Ssp(3) states. These surface states play an important role as mediators of electron transfer on both anodic and cathodic sites in the incipient oxidation of pyrite. Moreover, the (100) surface has small band gaps and shows some metallic character. It is predicted that the rate of cathodic reductive reaction of O(2) in the incipient oxidation of pyrite is much faster than previously considered. The transport of electrons from the anodic sites to the cathodic sites on the (100) surface is faster and hole injection of anodic sites is not the rate-determining step. So we can deduce that the rate-determining step of incipient oxidation for pyrite consists of both electron transfer of pyrite/aqueous O(2) interface and the splitting of H(2)O.  相似文献   

4.
采用基于第一性原理的密度泛函理论结合周期平板模型方法, 研究了甲醇分子在FeS2(100)完整表面的吸附与解离. 通过比较不同吸附位置的吸附能和构型参数发现: 表面Fe位为有利吸附位, 甲醇分子通过氧原子吸附在表面Fe位, 吸附后甲醇分子中的C―O键和O―H键都有伸长, 振动频率发生红移; 甲醇分子易于解离成甲氧基CH3O和H, 表面Fe位仍然是二者有利吸附位. 通过计算得出甲醇在FeS2(100)表面解离吸附的可能机理: 甲醇分子首先发生O―H键的断裂, 生成甲氧基中间体, 继而甲氧基C―H键断裂, 得到最后产物HCHO和H2.  相似文献   

5.
The kinetics of NO adsorption and dissociation on Pd(111) surfaces and the NO sticking coefficient (s(NO)) were probed by isothermal kinetic measurements between 300 and 525 K using a molecular beam instrument. NO dissociation and N2 productions were observed in the transient state from 425 K and above on Pd(111) surfaces with selective nitrogen production. Maximum nitrogen production was observed between 475 and 500 K. It was found that, at low temperatures, between 300 and 350 K, molecular adsorption occurs with a constant initial s(NO) of 0.5 until the Pd(111) surface is covered to about 70-80% by NO. Then s(NO) rapidly decreases with further increasing NO coverage, indicating typical precursor kinetics. The dynamic adsorption - desorption equilibrium on Pd(111) was probed in modulated beam experiments below 500 K. CO titration experiments after NO dosing indicate the diffusion of oxygen into the subsurface regions and beginning surface oxidation at > or = 475 K. Finally, we discuss the results with respect to the rate-limiting character of the different elementary steps of the reaction system.  相似文献   

6.
The coadsorption of H(2)O and NO(2) molecules on a well-ordered, ultrathin theta-Al(2)O(3)/NiAl(100) film surface was studied using temperature programmed desorption (TPD), infrared reflection absorption spectroscopy (IRAS), and X-ray photoelectron spectroscopy (XPS). For H(2)O and NO(2) monolayers adsorbed separately on the theta-Al(2)O(3)/NiAl(100) surface, adsorption energies were estimated to be 44.8 and 36.6 kJ/mol, respectively. Coadsorption systems prepared by sequential deposition of NO(2) and H(2)O revealed the existence of coverage and temperature-dependent adsorption regimes where H(2)O molecules and the surface NO(x) species (NO(2)/N(2)O(4)/NO(2)(-),NO(3)(-)) form segregated and/or mixed domains. Influence of the changes in the crystallinity of solid water (amorphous vs crystalline) on the coadsorption properties of the NO(2)/H(2)O/theta-Al(2)O(3)/NiAl(100) system is also discussed.  相似文献   

7.
In this study, we employed density functional theory (DFT) to investigate the oxidation of ammonia (NH(3)) on the IrO(2)(110) surface. We characterized the possible reaction pathways for the dehydrogenation of NH(x) species (x = 1-3) and for the formation of the oxidation products N(2), N(2)O, NO, NO(2), and H(2)O. The presence of oxygen atoms on coordinatively unsaturated sites (O(cus)) of the oxygen-rich IrO(2)(110) surface promotes the oxidation of NH(3) on the surface. In contrast, NH(3) molecules prefer undergoing desorption over oxidation on the stoichiometric IrO(2)(110) surface. Moreover, the O(cus) atoms are also the major oxidants leading to the formation of oxidation products; none of the oxidations mediated by the bridge oxygen atoms were favorable reactions. The energy barrier for formation of H(2)O as a gaseous oxidation product on the IrO(2)(110) surface is high (from 1.83 to 2.29 eV), potentially leading to the formation of nitrogen-atom-containing products at high temperature. In addition, the selectivity toward the nitrogen-atom-containing products is dominated by the coverage of O(cus) atoms on the surface; for example, a higher coverage of O(cus) atoms results in greater production of nitrogen oxides (NO, NO(2)).  相似文献   

8.
We have investigated the interaction of nitrogen with single-crystal iron pyrite FeS(2){100} surfaces in ultra-high vacuum. N(2) adsorbs molecularly at low temperatures, desorbing at 130 K, but does not adsorb dissociatively even at pressures up to 1 bar. Atomic surface N can, however, be obtained with nitrogen ions and/or excited neutral species, generated by passing N(2) through an ion gun. Substantial nitrogen-induced disorder is seen with both ions and neutrals, and no ordered N overlayers form; a decrease in the S/Fe ratio is seen when exposing to nitrogen ions. Recombinative desorption leads to temperature-programmed desorption peaks at 410 and 520-560 K which we associate with interstitial atomic N and substitutional ionic N, respectively, in the surface regions. Thermal repair of sputter damage necessitates segregation of bulk S to the surface, which, over repeated experiments, leads to gross cumulative damage to the bulk crystal. The desorption temperatures associated with recombinative desorption of atomic N from FeS(2){100} are significantly lower than those measured for Fe surfaces. This is linked to the inability of FeS(2){100} to dissociate N(2), but suggests that N(ads) will be significantly more able to react with other species than it is on Fe surfaces.  相似文献   

9.
The photolysis of nitrate anion (NO(3)(-)) contained in surface ice and snow can be a regionally significant source of gas-phase nitrogen oxides and affect the composition of the planetary boundary layer. In this study, the photochemical release of nitrogen oxides from frozen solutions containing NO(3)(-) in the presence of organic compounds was investigated. Gas-phase nitrogen oxides were quantified primarily by NO-O(3) chemiluminescence detection of NO and NO(y) (=NO + NO(2) + HONO + HNO(3) + ∑PAN + ∑AN ...) and cavity ring-down spectroscopy of NO(2) and total alkyl nitrates (∑AN). The photochemical production of gas-phase NO(y) was suppressed by the presence of formate, methanesulfonate, toluene, or phenol. In contrast, para-halogenated phenols (in the order of Cl > Br > F) promoted the conversion of NO(3)(-) to gas-phase NO(y), rationalized by acidification of the ice surface.  相似文献   

10.
Surface nitrate (NO3(-)) species on the Ag/Al2O3 play an important role in the selective catalytic reduction (SCR) of NOx. In this study, the formation and configuration of surface nitrate NO3(-)(ads) species on Ag/Al2O3 and Al2O3 in the oxidation of NO have been studied using in situ diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS) and density functional theory (DFT) calculations. Different nitrates species (bridging, bidentate and monodentate) were observed by in situ DRIFTS and validated by DFT calculations results. Attention was especially focused on the proposal of two different bidentate nitrates species (a normal bidentate and an isolated bidentate). In addition, the thermal stability of different surface nitrate species was discussed based on the adsorption energies calculations, DRIFTS, and temperature-programmed desorption (TPD) results. It was suggested that the decomposition and desorption of the surface nitrate species could be controlled by kinetics.  相似文献   

11.
The adsorption of nitrogen species, in neutral electrolyte solutions, onto boron-doped diamond (BDD) electrode surfaces from dissolved NO2, NO, and N2O gases was induced at 0 V/SCE. Modified BDD electrode surfaces showed a different electrochemical response toward the hydrogen evolution reaction than did a nonmodified electrode surface in electrolyte base solution. The formation of molecular hydrogen and nitrogen gaseous species was confirmed by the online differential electrochemical mass spectrometry (DEMS) technique. Among the three nitrogen oxides gases, NO2 substantially modifies the electrolyte via hydrolysis leading to the formation of NO3- and its adsorption on the BDD electrode surface. The BDD/(NO3-) interface was the only N2O and N2 species generating system.  相似文献   

12.
Comprehensive studies combining surface science and real catalyst were performed to get further insight into catalytic active site and reaction mechanism for NO decomposition over supported palladium and cobalt oxide-based catalysts. On palladium single-crystal model catalysts, adsorption, dissociation and desorption behavior of NO was found to be closely related to the surface structures, the stepped surface palladium being active for dissociation of NO. In accordance with this result, the activity of powder Pd/Al2O3 catalysts for NO decomposition was directly related to the number of step sites exposed on the surface, suggesting that the step sites act as the catalytic active site for NO decomposition on Pd/Al2O3. NO decomposition over cobalt oxide was found to be significantly promoted by addition of alkali metals. Surface science study and catalyst characterization led to the same conclusion that the interface between the alkali metal and Co3O4 serves as the catalytic active site. From the results of in situ Fourier transform infrared (FT-IR) spectroscopy and isotopic transient kinetic analysis, a reaction mechanism was proposed in which the reaction is initiated by NO adsorption onto alkali metals to form NO2 species and then NO2 species react with the adsorbed NO species to form N2 over the interface between the alkali metal and Co3O4.  相似文献   

13.
Synchrotron-based high-resolution photoemission, X-ray absorption near-edge spectroscopy, and first-principles density functional (DF) slab calculations were used to study the interaction of NO(2) with a TiO(2)(110) single crystal and powders of titania. The main product of the adsorption of NO(2) on TiO(2)(110) is surface nitrate with a small amount of chemisorbed NO(2). A similar result is obtained after the reaction of NO(2) with polycrystalline powders of TiO(2) or other oxide powders. This trend, however, does not imply that the metal centers of the oxides are unreactive toward NO(2). An unexpected mechanism is seen for the formation of NO(3). Photoemission data and DF calculations indicate that the surface nitrate forms through the disproportionation of NO(2) on Ti sites (2NO(2,ads) --> NO(3,ads) + NO(gas)) rather than direct adsorption of NO(2) on O centers of titania. Complex interactions take place between NO(2) and O vacancies of TiO(2)(110). Electronic states associated with O vacancies play a predominant role in the bonding and surface chemistry of NO(2). The adsorbed NO(2), on its part, affects the thermochemical stability of O vacancies, facilitating their migration from the bulk to the surface of titania. The behavior of the NO(2)/titania system illustrates the importance of surface and subsurface defects when using an oxide for trapping or destroying NO(x)() species in the prevention of environmental pollution (DeNOx operations).  相似文献   

14.
Detailed experimental studies are described for reactions of several nitrogen oxides with iron porphyrin models for heme/NxOy systems. It is shown by FTIR and optical spectroscopy and by isotope labeling experiments that reaction of small increments of NO2 with sublimed thin layers of the iron(II) complex Fe(Por) (Por = meso-tetraphenylporphyrinato dianion, TPP, or meso-tetra-p-tolylporphyrinato dianion, TTP) leads to formation of the 5-coordinate nitrito complexes Fe(Por)(eta1-ONO) (1), which are fairly stable but very slowly decompose under vacuum giving mostly the corresponding nitrosyl complexes Fe(Por)(NO). Further reaction of 1 with new NO2 increments leads to formation of the nitrato complex Fe(Por)(eta2-O2NO) (2). The interaction of NO with 1 at low temperature involves ligand addition to give the nitrito-nitrosyl complexes Fe(Por)(eta1-ONO)(NO) (3); however, these isomerize to the nitro-nitrosyl analogs Fe(Por)(eta1-NO2)(NO) (4) upon warming. Experiments with labeled nitrogen oxides argue for an intramolecular isomerization ("flipping") mechanism rather than one involving dissociation and rebinding of NO2. The Fe(III) centers in the 6-coordinate species 3 and 4 are low spin in contrast to 1, which appears to be high-spin, although DFT computations of the porphinato models Fe(P)(nitrite) suggest that the doublet nitro species and the quartet and sextet nitrito complexes are all relatively close in energy. The nitro-nitrosyl complex 4 is stable under an NO atmosphere but decomposes under intense pumping to give a mixture of the ferrous nitrosyl complex Fe(Por)(NO) and the ferric nitrito complex Fe(Por)(eta1-ONO) indicating the competitive dissociation of NO and NO2. Hence, loss of NO from 4 is accompanied with nitro --> nitrito isomerization consistent with 1 being the more stable of the 5-coordinate NO2 complexes of iron porphyrins.  相似文献   

15.
Density functional theory (DFT) and periodic slab model have been used to systemically study the adsorption and dissociation of NO and the formation of N(2) on the Ir(100) surface. The results show that NO prefers the bridge site with the N-end down and NO bond-axis perpendicular to the Ir surface, and adsorption to the top site is only 0.05 eV less favorable, whereas the hollow adsorption is the least stable. Two dissociation pathways for the adsorbed NO on bridge or top site are located: One is a direct decomposition of NO and the other is diffusion of NO from the initial state to the hollow site followed by dissociation into N and O atoms. The latter pathway is more favorable than the former one due to the lower energy barrier and is the primary pathway for NO dissociation. Based on the DFT results, microkinetic analysis suggests that the recombination of two N adatoms on the di-bridge sites is the predominant pathway for N(2) formation, whereas the formation of N(2)O or NO(2) is unlikely to occur during NO reduction. The high selectivity of Ir(100) toward N(2) is in good agreement with the experimental observations.  相似文献   

16.
NO在氧预吸附Ir(100)表面吸附和解离的第一性原理研究   总被引:1,自引:0,他引:1  
采用第一性原理密度泛函理论和周期性平板模型研究了NO在O预吸附Ir(100)表面的吸附和解离, 并考察了预吸附的O对可能产物N2, N2O和NO2的选择性的影响. 优化得到反应过程中初态、 过渡态和末态的吸附构型, 并获得反应的势能面信息. 计算结果表明, NO在O预吸附表面最稳定的吸附位是桥位, 其次是顶位. 桥位和顶位的NO在表面存在两条解离通道, 即直接解离通道和由桥位和顶位扩散到平行空位, 继而发生N-O键断裂生成N原子和O原子的解离通道. 此分离机理与洁净表面上NO解离机理相同, 但后一种解离方式优于前一种, 是NO在表面上解离的主要通道. 预吸附的O原子在不同程度上抑制了NO的解离, 导致桥位和顶位NO解离互相竞争. 在O预吸附Ir(100)表面, N2气是唯一的产物, 不会有副产物N2O和NO2的生成, 与实验结果一致. 预吸附的O在N/O低覆盖度下几乎不影响N2气的生成, 但在较高覆盖度下则促进了N2气的生成.  相似文献   

17.
We have used in situ polarization-modulation infrared reflection absorption spectroscopy to study the adsorption/dissociation of NO on Rh(111). While these studies have not been conclusive regarding the detailed surface structures formed during adsorption, they have provided important new information on the dissociation of NO on Rh(111). At moderate pressures (< or =10(-6) Torr) and temperatures (<275 K), a transition from 3-fold hollow to atop bonding is apparent. Data indicate that this transition is not due to the migration of the 3-fold hollow NO but rather to the adsorption of gas-phase NO that is directed toward the atop position due to the presence of NO decomposition products, particularly chemisorbed atomic O species at the hollow sites. These results indicate that NO dissociation occurs at temperatures well below the temperature previously reported. Additionally, high pressure (1 Torr) NO exposure at 300 K results in only atop NO, calling into question the surface structures previously proposed at these adsorption conditions consisting of atop and 3-fold hollow sites.  相似文献   

18.
NO在氧化铝负载的Pd催化剂上吸附的TPD-MS研究   总被引:5,自引:0,他引:5  
刘振林  屠兢  伏义路 《催化学报》2000,21(3):279-282
消除汽车尾气中的氮氧化物(NOx)对保护大气环境有着重要意义.为了除去NOx,已经进行了许多卓有成效的研究,例如NOx在分子筛上的直接分解和催化还原,在贵金属三效催化剂上的还原等.  相似文献   

19.
The density functional theory (DFT) method has been used to investigate NO probe molecule adsorption on the stoichiometric (Mo(16)S(32)) and nonstoichiometric (Mo(16)S(34) and Mo(16)S(29)) clusters. The calculated adsorption energies indicate that the stoichiometric cluster has stronger NO affinity than the nonstoichiometric surfaces. It is also found that mononitrosyl adsorption is favored at low NO coverage, while dinitrosyl (germinal) and (NO)(2) dimer adsorption at high NO coverage are possible. Strong repulsive interaction has been found for the adsorbed dinitrosyl and (NO)(2) dimer species. In addition, the computed NO stretching frequencies for the mononitrosyl and dinitrosyl species agree well with the experimental data, while those of the dimer species are much lower than the suggested experimental data.  相似文献   

20.
Molecular beam surface scattering and X-ray absorption spectroscopic experiments were employed to study the reaction of deuterium atoms with a pyrite, FeS(2) (100), surface and to investigate the electronic and geometric structures of the resulting Fe-S phases. Incident D atoms, produced by a radiofrequency plasma and expanded in an effusive beam, were directed at a pyrite surface held at various temperatures from ambient up to 200 °C. During exposure to the D-atom beam, D(2)S products were released with a thermal distribution of molecular speeds, indicating that the D atoms likely reacted in thermal equilibrium with the surface. The yield of D(2)S from the surface decreased approximately exponentially with exposure duration, suggesting that the surface accessible sulfur atoms were depleted, thus leaving an iron-rich surface. This conclusion is consistent with X-ray absorption measurements of the exposed surfaces, which indicated the formation of a layered structure, with elemental iron as the outermost layer on top of a formally Fe((I))-S phase as an intermediate layer and a formally Fe((II))-S(2) bulk pyrite layer at lower depths. The reduced Fe((I))-S phase is particularly remarkable because of its similarity to the catalytically active sites of small molecule metalloenzymes, such as FeFe-hydrogenases and MoFe-nitrogenases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号