首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
An electrode construct was fabricated in which a self-assembled monolayer containing a novel norbornylogous bridge was covalently attached to flavin adenine dinucleotide (FAD), the redox active centre of several oxidase enzymes. The electrochemistry of the construct was investigated before and after the reconstitution of glucose oxidase around the surface bound FAD. Rapid rates of electron transfer were observed both before and after the reconstitution of biocatalytically active enzyme. However, no biocatalytic activity was observed under anaerobic conditions suggesting the a lack of enzyme turnover through direct electron transfer. It is proposed that a decrease in the electronic coupling between the redox active FAD and the electrode following reconstitution of the glucose oxidase – a probable consequence of the FAD being immersed in a protein environment – was responsible for the inability of the enzyme to be turned over under anaerobic conditions.  相似文献   

2.
We report on the "molecular wiring" efficiency of glucose oxidase in organized self-assembled nanostructures comprised of enzyme layers alternating with layers of an osmium-derivatized poly(allylamine) cationic polyelectrolyte, acting as redox relays. Varying the relative position of the active enzyme layer in nanostructures alternating active enzyme and inactive apoenzyme we have demonstrated that the specific rate of bimolecular FADH(2) oxidation ("wiring efficiency") is limited by the diffusion-like electron hopping mechanism in the multilayers.  相似文献   

3.
Electron-transfer mechanisms in amperometric biosensors   总被引:1,自引:0,他引:1  
The function of amperometric biosensors is related to electron-transfer processes between the active site of an (immobilized) enzyme and an electrode surface which is poised to an appropriate working potential. Problems and specific features of architectures for amperometric biosensors using different electron-transfer pathways such as mediated electron transfer, electron-hopping in redox polymers, electron transfer using mediator-modified enzymes and carbon-paste electrodes, direct electron transfer by means of self-assembled monolayers or via conducting-polymer chains are discussed.  相似文献   

4.
The carbon cavity microelectrode (CME), exhibiting a volume of 4×10?6 cm3, offers a genuine alternative for immobilizing and connecting enzymes in aqueous electrolytes by powder of insoluble redox materials. In the present work, the electrochemical behavior of two redox species such as ferrocene (Fc) and tetrathiafulvalene (TTF) was investigated with CME to evaluate their potentialities in the electrical wiring of enzymes. For this purpose, powder of two enzymes, glucose oxidase (GOx) and horseradish peroxidase (HRP), was independently mixed with an insoluble redox material and forced to fill the single micro cavity of a carbon electrode covered by an inert insulator. The presence of the electroactive species, as well as the enzyme wiring was investigated by cyclic voltammetry. The amperometric detection of glucose was carried out by potentiostating the TTF/GOx and the Fc/GOx microelectrodes at 0.25 and 0.35 V respectively. The amperometric detection of H2O2 by the TTF/HRP microelectrode was performed at ?0.1 V vs. SCE.  相似文献   

5.
Unique structured nanomaterials can facilitate the direct electron transfer between redox proteins and the electrodes. Here, in situ directed growth on an electrode of a ZnO/Cu nanocomposite was prepared by a simple corrosion approach, which enables robust mechanical adhesion and electrical contact between the nanostructured ZnO and the electrodes. This is great help to realize the direct electron transfer between the electrode surface and the redox protein. SEM images demonstrate that the morphology of the ZnO/Cu nanocomposite has a large specific surface area, which is favorable to immobilize the biomolecules and construct biosensors. Using glucose oxidase (GOx) as a model, this ZnO/Cu nanocomposite is employed for immobilization of GOx and the construction of the glucose biosensor. Direct electron transfer of GOx is achieved at ZnO/Cu nanocomposite with a high heterogeneous electron transfer rate constant of 0.67 ± 0.06 s(-1). Such ZnO/Cu nanocomposite provides a good matrix for direct electrochemistry of enzymes and mediator-free enzymatic biosensors.  相似文献   

6.
The majority of protein spectroelectrochemical methods utilize a diffusing, chemical mediator to exchange electrons between the electrode and the protein. In such methods, electrochemical potential control is limited by mediator choice and its ability to interact with the protein of interest. We report an approach for unmediated, protein spectroelectrochemistry that overcomes this limitation by adsorbing protein directly to thiol self-assembled monolayer (SAM) modified, thin (10 nm), semitransparent gold. The viability of the method is demonstrated with two diverse and important redox proteins: cytochrome c and azurin. Fast, reversible electrochemical signals comparable to those previously reported for these proteins on ordinary disk gold electrodes were observed. Although the quantity of protein in a submonolayer adsorbed at an electrode is expected to be insufficient for detection of UV-vis absorption bands based on bulk extinction coefficients, excellent spectra were detected for each of the proteins in the adsorbed state. Furthermore, AFM imaging confirmed that only a single layer of protein was adsorbed to the electrode. We hypothesize that interaction of the relatively broad gold surface plasmon with the proteins' electronic transitions results in surface signal enhancement of the molecular transitions of between 8 and 112 times, allowing detection of the proteins at much lower than expected concentrations. Since many other proteins are known to interact with gold SAMs and the technical requirements for implementation of these experiments are simple, this approach is expected to be very generally applicable to exploring mechanisms of redox proteins and enzymes as well as development of sensors and other redox protein based applications.  相似文献   

7.
A nonenzymatic electrochemical method is described for the detection of glucose by using gold (Au) nanoparticles self-assembled on a three-dimensional (3D) silicate network obtained by using sol-gel processes. The nanosized Au particles have been self-assembled on the thiol tail groups of the silicate network and enlarged by hydroxylamine. The Au nanoparticles efficiently catalyze the oxidation of glucose at less-positive potential (0.16 V) in phosphate buffer solution (pH 9.2) in the absence of any enzymes or redox mediators. The Au nanoparticle-modified transducer (MPTS-nAuE) was successfully used for the amperometric sensing of glucose and it showed excellent sensitivity with a detection limit of 50 nM. The common interfering agent ascorbate (AA) does not interfere with the detection of glucose. The MPTS-nAuE transducer showed individual voltammetric responses for glucose and AA. This transducer responded linearly to glucose in the range of 0-8 mM and the sensitivity of the transducer was found to be 0.179 nA cm(-2) nM(-1). Excellent reproducibility, and long-term storage and operational stability was observed for this transducer.  相似文献   

8.
L-半胱氨酸自组装膜修饰金电极的电化学特性   总被引:6,自引:0,他引:6  
采用电化学石英晶体微天平(EQCM)和循环伏安法(CV)研究了L-半胱氨酸在金电极表面形成自组装膜的机理及其电化学性质.结果表明, L-半胱氨酸分子在金电极表面有特性吸附,而且在等电点pH附近因静电引力和氢键作用形成分子对,从而自组装形成双层膜.该膜电极在0.2 mol•L-1的醋酸缓冲溶液中,于-0.2~0.5 V(vs SCE)间CV扫描出现了一对稳定的氧化还原峰,并对抗坏血酸的氧化有良好的催化作用.  相似文献   

9.
The enantioselectivity of the self-assembled monolayer (SAM) of homocysteine formed on the (111)-oriented gold surface was investigated. We analyzed the redox behavior of 3,4-dihydroxyphenylalanine (DOPA), which is an electrochemically active chiral molecule, by means of cyclic voltammetry at a gold electrode modified with one enantiomeric form of homocysteine. It was demonstrated that the homocysteine SAM of one enantiomeric form blocked the redox reaction of only one enantiomer of DOPA, with cross inversion for the other enantiomer, in acidic solution.  相似文献   

10.
Calvo EJ  Battaglini F  Danilowicz C  Wolosiuk A  Otero M 《Faraday discussions》2000,(116):47-65; discussion 67-75
Layer-by-layer supramolecular structures composed of alternate layers of negatively charged enzymes and cationic redox polyelectrolyte have been assembled. Glucose oxidase (GOx), lactate oxidase (LOx) and soybean peroxidase (SBP) have been electrically wired to the underlying electrode by means of poly(allylamine) with [Os(bpy)2ClPyCOH]+ covalently attached (PAA-Os) in organized structures with high spatial resolution. Biotinylated glucose oxidase has also been used to assemble step-by-step on antibiotin goat immunoglobulin (IgG) layers and the enzyme was electrically wired by PAA-Os. These spatially organized multilayers with mono- and bienzymatic schemes can work efficiently in molecular recognition, redox mediation and generation of an electrical signal. The concentration of redox mediator integrated into the multilayers, obtained from the voltammetric charge and an estimation of the layer thickness, exceeds by 100-fold the amount of deposited enzyme assessed by quartz crystal microbalance. Differences in GOx electrical wiring efficiency have been detected with the different assembling strategies. The surface concentration of electrically wired enzyme represents a small proportion of all the enzyme molecules present in the multilayers which can be oxidized by the soluble mediator [Os(bpy)2Cl PyCOOH]Cl. This proportion, as well as the rate of FADH2 oxidation by PAA-Os, increases with the number of electrically wired enzyme layers and with the spatial accessibility of the Os moiety to the enzyme active center.  相似文献   

11.
《Electroanalysis》2005,17(1):38-46
Direct electron transfer between an electrode and the redox active centre of glucose oxidase, flavin adenine dinucleotide (FAD), is probed using carbon nanotube modified gold electrodes. Gold electrodes are first modified with a self‐assembled monolayer of cysteamine and then shortened single walled carbon nanotubes (SWNT) are aligned normal to the electrode surface by self‐assembly. The electrochemistry of these aligned nanotube electrode arrays is initially investigated using potassium ferricyanide which showed SWNT act as nanoelectrodes with the ends of the tubes more electrochemically active than the walls. Subsequently the nanotubes are plugged into the enzymes in one of two ways. In the first method, native glucose oxidase is covalently attached to the ends of the aligned tubes which allowed close approach to FAD and direct electron transfer to be observed with a rate constant of 0.3 s?1. In the second strategy, FAD was attached to the ends of the tubes and the enzyme reconstituted around the surface immobilized FAD. This latter approach allowed more efficient electron transfer to the FAD with a rate constant of 9 s?1.  相似文献   

12.
Cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS), and digital simulation techniques were used to investigate quantitatively the mechanism of electron transfer (ET) through densely packed and well-ordered self-assembled monolayers (SAMs) of 11-mercaptoundecanoic acid on gold, either pristine or modified by physically adsorbed glucose oxidase (GOx). In the presence of ferrocenylmethanol (FcMeOH) as a redox mediator, ET kinetics involving either solution-phase hydrophilic redox probes such as [Fe(CN)6]3-/4- or surface-immobilized GOx is greatly accelerated: [Fe(CN)6]3-/4- undergoes diffusion-controlled ET, while the enzymatic electrochemical conversion of glucose to gluconolactone is efficiently sustained by FcMeOH. Analysis of the results, also including the digital simulation of CV and EIS data, showed the prevalence of an ET mechanism according to the so-called membrane model that comprises the permeation of the redox mediator within the SAM and the intermolecular ET to the redox probe located outside the monolayer. The analysis of the catalytic current generated at the GOx/SAM electrode in the presence of glucose and FcMeOH allowed the high surface protein coverage suggested by X-ray photoelectron spectroscopy (XPS) measurements to be confirmed.  相似文献   

13.
Biomolecule-nanoparticle hybrid systems for bioelectronic applications   总被引:1,自引:0,他引:1  
Recent advances in nanobiotechnology involve the use of biomolecule-nanoparticle (NP) hybrid systems for bioelectronic applications. This is exemplified by the electrical contacting of redox enzymes by means of Au-NPs. The enzymes, glucose oxidase, GOx, and glucose dehydrogenase, GDH, are electrically contacted with the electrodes by the reconstitution of the corresponding apo-proteins on flavin adenine dinucleotide (FAD) or pyrroloquinoline quinone (PQQ)-functionalized Au-NPs (1.4 nm) associated with electrodes, respectively. Similarly, Au-NPs integrated into polyaniline in a micro-rod configuration associated with electrodes provides a high surface area matrix with superior charge transport properties for the effective electrical contacting of GOx with the electrode. A different application of biomolecule-Au-NP hybrids for bioelectronics involves the use of Au-NPs as carriers for a nucleic acid that is composed of hemin/G-quadruplex DNAzyme units and a detecting segment complementary to the analyte DNA. The functionalized Au-NPs are employed for the amplified DNA detection, and for the analysis of telomerase activity in cancer cells, using chemiluminescence as a readout signal. Biomolecule-semiconductor NP hybrid systems are used for the development of photoelectrochemical sensors and optoelectronic systems. A hybrid system consisting of acetylcholine esterase (AChE)/CdS-NPs is immobilized in a monolayer configuration on an electrode. The photocurrent generated by the system in the presence of thioacetylcholine as substrate provides a means to probe the AChE activity. The blocking of the photocurrent by 1,5-bis(4-allyldimethyl ammonium phenyl)pentane-3-one dibromide as nerve gas analog enables the photoelectrochemical analysis of AChE inhibitors. Also, the association CdS-NP/double-stranded DNA hybrid systems with a Au-electrode, and the intercalation of methylene blue into the double-stranded DNA, generates an organized nanostructure of switchable photoelectrochemical functions. Electrochemical reduction of the intercalator to the leuco form, -0.4 V vs. SCE, results in a cathodic photocurrent as a result of the transfer of photoexcited conduction-band electrons to O(2) and the transport of electrons to the valance-band holes by the reduced intercalator units. The oxidation of the intercalator, E 0 V (vs. SCE), yields in the presence of triethanolamine, TEOA, as sacrificial electron donor, an anodic photocurrent by the transport of conduction-band electrons, through intercalator units, to the electrodes, and filling the valance-band holes with electrons supplied by TEOA. The systems reveal potential-switchable directions of the photocurrents, and reveal logic gate functions.  相似文献   

14.
Pd nanoparticles with an average diameter of 5 nm were decorated on the surface of ionic liquid derived fibrillated mesoporous carbon (IFMC) to prepare a novel nano‐hybrid material (Pd@IFMC). Thereafter, glucose oxidase was immobilized on Pd@IFMC modified glassy carbon electrode to fabricate an enzymatic glucose biosensor. A pair of well‐defined redox peaks was recorded for direct electron transfer of the immobilized glucose oxidase at the formal potential of ? 0.418 V with a peak to peak separation of 25 mV. Electron transfer rate constant of was calculated to be 14.6 s?1. The response of fabricated biosensor was linear towards glucose concentration.  相似文献   

15.
The construction of electrostatically self-assembled intelligent nanostructures on electrodes with redox enzyme layers and redox polymer molecular wires defined in space allowed the analysis of redox charge transport from the redox enzyme to the electrode along nanometric distances. Recent results on the electrical connection of enzymes to electrodes and perspectives of generating electrical signals from molecular recognition in integrated enzyme electrodes are discussed.  相似文献   

16.
The influence of pH on the redox properties of cytochrome c (cyt c) adsorbed on roughened silver electrodes chemically modified with a self-assembled monolayer (SAM) of 11-mercapto-1-undecanoic acid (MUA) was studied with voltammetric techniques in combination with surface-enhanced resonance Raman scattering (SERRS). The experiments were performed simultaneously on the same electrode sample in a homemade spectroelectrochemical cell suitable for such applications. At pH 7.0 cyt c was found in its native state; at higher pH values (ranging from 8.0 to 9.0) the redox properties of the adsorbed protein varied considerably, featuring a redox behavior which does not resemble the one reported for the alkaline transition. Our results instead indicate the presence of an electrochemically inactive 6cLS species immobilized on MUA at pH 9.0. The pH-induced conformational changes observed for cyt c immobilized on the SAM of MUA were found to be repeatable and chemically reversible, meaning that the recovery of the electrochemical signal due to the native protein occurred instantaneously (on the second time scale) when the electrode was switched back to pH 7.0. The pH-induced changes observed were attributed to a conformational change involving a heme reorientation with respect to the electrode surface.  相似文献   

17.
A 1,3-butadiyne-linked diruthenium complex 4 is successfully brought onto the gold surface in a lying flat mode to form self-assembled monolayers (SAMs) showing reversible multiple redox behaviors on the electrode surface. The diruthenium species with different oxidation states, particularly the Ru(2)(III,III) state which is unstable and impossible to isolate from the solution, can be detected by in situ IR spectroscopy.  相似文献   

18.
A series of glucose oxidase hybrids capable of a direct electrical communication with electrodes is synthesized by covalently bonding phenothiazine mediators to surface lysine residues via poly(ethylene oxide) spacers with different lengths. The hybrid with the optimum length of spacer chain exhibits the fast electron transfer between the redox center of enzyme and electrodes. This fast electron transfer in the hybrids realizes a large catalytic current comparable to that for the corresponding freely diffusing mediator systems.  相似文献   

19.
Biofuel cells are devices for generating electrical energy directly from chemical energy of renewable biomass using biocatalysts such as enzymes. Efficient electrical communication between redox enzymes and electrodes is essential for enzymatic biofuel cells. Carbon nanotubes (CNTs) have been recognized as ideal electrode materials because of their high electrical conductivity, large surface area, and inertness. Electrodes consisting entirely of CNTs, which are known as CNT paper, have high surface areas but are typically weak in mechanical strength. In this study, cellulose (CL)–CNT composite paper was fabricated as electrodes for enzymatic biofuel cells. This composite electrode was prepared by vacuum filtration of CNTs followed by reconstitution of cellulose dissolved in ionic liquid, 1-ethyl-3-methylimidazolium acetate. Glucose oxidase (GOx), which is a redox enzyme capable of oxidizing glucose as a renewable fuel using oxygen, was immobilized on the CL–CNT composite paper. Cyclic voltammograms revealed that the GOx/CL–CNT paper electrode showed a pair of well-defined peaks, which agreed well with that of FAD/FADH2, the redox center of GOx. This result clearly shows that the direct electron transfer (DET) between the GOx and the composite electrode was achieved. However, this DET was dependent on the type of CNTs. It was also found that the GOx immobilized on the composite electrode retained catalytic activity for the oxidation of glucose.  相似文献   

20.
A universal, site-addressable DNA linking strategy is deployed for the programmable assembly of multifunctional, long-lasting redox protein nanoelectronic devices. This addressable linker, the first incorporated into a redox enzyme-nanoelectronic system, promotes versatility and renewability by allowing the reconfiguration and replacement of enzymes at will. The linker is transferable to all redox proteins due to the simple conjugation chemistry involved. The efficacy of this linking strategy is assessed using two model enzymes, glucose oxidase (GOx) and alcohol dehydrogenase (ADH), self-assembled onto separate nanoelectrode regions comprised of a highly ordered carbon nanotube (CNT) array. The sequence-specificity of DNA hybridization provides the means of encoding spatial address to the self-assembling process that conjugates enzymes tagged with single-stranded DNA (ssDNA) to the tips of designated CNTs functionalized with the complementary strands. In this study, we demonstrate the feasibility of multiplexed, scalable, reconfigurable and renewable transduction of redox protein signals by virtue of DNA addressing.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号