首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 593 毫秒
1.
The synthesis and properties of 3 new ligand-bridged bimetallic complexes, 1(2+), 2(2+), and 3(2+), containing [RuCl([9]aneS(3))](+) metal centers are reported. Each complex was bridged by a different ditopic ligand. 1(2+) is bridged by 3,6-bis(2-pyridyl)-1,2,4,5-tetrazine (bptz), while 2(2+) and 3(2+) are bridged by 2,3-bis(2-pyridyl)pyrazine (dpp) and 2,2'-bipyrimidine (bpym), respectively. The Ru([II]) isovalent states of these complexes have been investigated using a variety of techniques. In the case of 3(2+), X-ray crystallography studies show preferential crystallization of an anti form with respect to coordinated chloride ligands (crystal data for [3][Cl(2)].4H(2)O: C(20)H(38)Cl(4)N(4)O(4)Ru(2)S(6), monoclinic, space group P2(1)/a, a = 10.929(14), b = 13.514(17), c = 11.299(16) A, beta = 90.52(1), V = 1669 A(3), Z = 2). UV/vis spectroscopy shows that spectra of these complexes are dominated by intraligand (pi-->pi) and metal-to-ligand Ru(d)-->L(pi) charge transfer transitions. Electrochemical studies reveal that metal-metal interactions are sufficiently intense to generate the Ru(III)/Ru(II) mixed valence [[RuCl([9]aneS(3))(2)](L-L)](3+) state, where L-L = individual bridging ligands. Although the 1(3+), 2(3+), and 3(3+) mixed valence states were EPR silent at room temperature and 77 K, isotropic solution spectra were observed for the electrochemically generated radical cations 1(+), 2(+), and 3(+), with 1(+) displaying well-resolved hyperfine coupling to bridging ligand nitrogens. Using UV/vis/NIR spectroelectrochemistry, we investigated optical properties of the mixed valence complexes. All three showed intervalence charge transfer (IVCT) bands that are much more intense than electrochemical data indicate. Indeed, a comparison of IVCT data for 1(3+) with an analogous structure containing [(NH3)(3)Ru](2+) metal centers shows that the IVCT in the new complex is an order of magnitude more intense. It is concluded that although the new complexes show relatively weak electrostatic interactions, they possess large resonance energies.  相似文献   

2.
The complexes formed by the simplest amino acid, glycine, with different bare and hydrated metal ions (Mn(2+), Fe(2+), Co(2+), Ni(2+), Cu(2+), Zn(2+)) were studied in the gas phase and in solvent in order to give better insight into the field of the metal ion-biological ligand interactions. The effects of the size and charge of each cation on the organization of the surrounding water molecules were analyzed. Results in the gas phase showed that the zwitterion of glycine is the form present in the most stable complexes of all ions and that it usually gives rise to an eta(2)O,O coordination type. After the addition of solvation sphere, a resulting octahedral arrangement was found around Ni(2+), Co(2+), and Fe(2+), ions in their high-spin states, whereas the bipyramidal-trigonal (Mn(2+) and Zn(2+)) or square-pyramidal (Cu(2+)) geometries were observed for the other metal species, according to glycine behaves as bi- or monodentate ligand. Despite the fact that the zwitterionic structure is in the ground conformation in solution, its complexes in water are less stable than those obtained from the canonical form. Binding energy values decrease in the order Cu(2+) > Ni(2+) > Zn(2+) approximately Co(2+) > Fe(2+) > Mn(2+) and Cu(2+) > Ni(2+) > Mn(2+) approximately Zn(2+) > Fe(2+) > Co(2+) for M(2+)-Gly and Gly-M(2+) (H(2)O)(n) complexes, respectively. The nature of the metal ion-ligand bonds was examined by using natural bond order and charge decomposition analyses.  相似文献   

3.
The experimentally determined molecular structures of 40 transition metal complexes with the tetradentate bispyridine-substituted bispidone ligand, 2,4-bis(2-pyridine)-3,7-diazabicyclo[3.3.1]nonane-9-one [M(bisp)XYZ]n+; M = CrIII, MnII, FeII, CoII, CuII, CuI, ZnII; X, Y, Z = mono- or bidentate co-ligands; penta-, hexa- or heptacoordinate complexes) are characterized in detail, supported by force-field and DFT calculations. While the bispidine ligand is very rigid (N3...N7 distance = 2.933 +/- 0.025 A), it tolerates a large range of metal-donor bond lengths (2.07 A < sigma(M-N)/4 < 2.35 A). Of particular interest is the ratio of the bond lengths between the metal center and the two tertiary amine donors (0.84 A < M-N3/M-N7 < 1.05 A) and the fact that, in terms of this ratio there seem to be two clusters with M-N3 < M-N7 and M-N3 > or = M-N7. Calculations indicate that the two structural types are close to degenerate, and the structural form therefore depends on the metal ion, the number and type of co-ligands, as well as structural variations of the bispidine ligand backbone. Tuning of the structures is of importance since the structurally differing complexes have very different stabilities and reactivities.  相似文献   

4.
A density functional theory study of the structure of the title compounds with the divalent metal ions in their high-spin ground state, obtained using B3LYP/6-311++G(d,p) in vacuo and in aqueous solution simulated using a polarized continuum medium, is reported for the first time. The modeling reproduces the pseudo pentagonal bipyramidal crystallographic structures very well, including some asymmetry in the equatorial bonds lengths to the crown ether O donors. The very marked asymmetry in the Ni(2+) structure due to a Jahn-Teller distortion of a d(8) system in a D(5h) ligand field is also well reproduced. The gas phase binding energies of the complexes follow the order Mn(2+) < Fe(2+) < Co(2+) < Ni(2+) < Cu(2+) > Zn(2+), in precise agreement with the Irving-William series. Both the NPA and Bader charges show there is ligand-to-metal charge transfer; however, the values obtained from the NPA procedure, unlike those obtained from Bader's quantum theory of molecules approach, do not correlate with the electronegativity of the metal ions, the stabilization energies of the solvated complexes or the ionic radii of the metal ions, and so appear to be less reliable. The nature of the bonding between the ligands and the metal ions has been explored using the topological properties of the electron charge density. The metal-ligand bond distances were found to be exponentially correlated with the electron charge density, its Laplacian, and with its curvature in the direction of the bond path at M-O bond critical points. While the bonding with coordinated H(2)O is predominantly ionic, that to the crown ether donor atoms has some covalent character the extent of which increases across the first transition series. The delocalization indices of M-O bonds in these complexes correlate reasonably well with the electron density and its Laplacian at the bond critical points; this therefore provides a rapid and computationally very efficient way of determining these properties, from which insight into the nature of the bonding can be obtained, obviating the need for time-consuming integration over atomic basins.  相似文献   

5.
Divalent metal complexes of macrocyclic ligand 1,4,8,11-tetraazacyclotetradecane-1,8-bis(methylphosphonic acid)) (1,8-H4te2p, H4L) were investigated in solution and in the solid state. The majority of transition-metal ions form thermodynamically very stable complexes as a consequence of high affinity for the nitrogen atoms of the ring. On the other hand, complexes with Mn2+, Pb2+ and alkaline earth ions interacting mainly with phosphonate oxygen atoms are much weaker than those of transition-metal ions and are formed only at higher pH. The same tendency is seen in the solid state. Zinc(II) ion in the octahedral trans-O,O-[Zn(H2L)] complex is fully encapsulated within the macrocycle (N4O2 coordination mode with protonated phosphonate oxygen atoms). The polymeric {[Pb(H2L)(H2O)2].6H2O}n complex has double-protonated secondary amino groups and the central atom is bound only to the phosphonate oxygen atoms. The phosphonate moieties bridge lead atoms creating a 3D-polymeric network. The [{(H2O)5Mn}2(micro-H2L)](H2L).21H2O complex contains two pentaaquamanganese(II) moieties bridged by a ligand molecule protonated on two nitrogen atoms. In the complex cation, oxygen atoms of the phosphonate groups on the opposite sites of the ring occupy one coordination site of each metal ion. The second ligand molecule is diprotonated and balances the positive charge of the complex cation. Complexation of zinc(II) and cadmium(II) by the ligand shows large differences in reactivity of differently protonated ligand species similarly to other cyclam-like complexes. Acid-assisted dissociations of metal(II) complexes occur predominantly through triprotonated species [M(H3L)]+ and take place at pH < 5 (Zn2+) and pH < 6 (Cd2+).  相似文献   

6.
Three new metal complexes of 4,6-bis(4-chlorophenyl)-2-amino-1,2-dihydropyridine-3-carbinitrile (L) with Co(II), Ni(II) and Cu(II) were synthesized and characterized with physicochemical and spectroscopic techniques. The data suggest that (L) acts as a bidentate ligand bound to the divalent metal ions through amino N and carbinitrile N atoms having [M(L)2(H2O)2]2+ formula (M = metal ions). The theoretical parameters, model structures, charges and molecular orbitals of all possible complexes have been determined using density functional theory. The energy gap of free ligand is ?E = 0.12565 eV, and this value is greater than energy gap of complexes, which indicates that the complexes are more reactive than free ligand. Also, ?E of Co(II) complex is lower than other complexes, which indicates that Co(II) complex is more reactive than Ni(II) and Cu(II) complexes. The antibacterial and antifungal activities of the ligand, metal salts and its complexes were tested against some microorganisms (bacteria and fungi). The complexes showed increased antibacterial and antifungal profile in comparison with the free ligand.  相似文献   

7.
The copper(II), nickel(II), and zinc(II) complexes of the acyclic Schiff base H(2)L(A), obtained by [1 + 2] condensation of 1,2-ethanediamine,N-(2-aminoethyl)-N-methyl with 3-ethoxy-2-hydroxybenzaldehyde, and of H(2)L(B), the reduced derivative of H(2)L(A), were prepared and their properties studied by IR, NMR and SEM-EDS. In these complexes, the metal ion is always located in the coordination chamber of the ligand delimited by two phenol oxygens and nitrogen atoms (either aminic or iminic). The coordination behaviour of H(2)L(A) and H(2)L(B) towards H(+), Cu(2+), Ni(2+) and Zn(2+) in aqueous solution at 298 K and mu = 0.1 mol dm(-3) (Na)ClO(4) was also studied by potentiometric, NMR and UV-VIS measurements. In particular, potentiometric equilibrium studies indicate that H(2)L(A) is not stable enough to have a pH range in which it is the sole species in aqueous solution. In such a solution, the Schiff base forms over a limited pH range, between 6 and 10, with a maximum formation percentage at pH approximately 9. In addition, the involvement of imine nitrogens in the complexes markedly stabilises the azomethylene linkage, so that the metal complexes of H(2)L(A), particularly those of copper(II), are the species largely prevailing in solutions with pH >3.5. The stability constants of the complexes formed by metal ions with H(2)L(A) and H(2)L(B) follow the order Cu(2+) > Ni(2+) > Zn(2+); distribution plots show that copper(II) gives complexes more stable with H(2)L(A), whereas Ni(2+) and Zn(2+) prefer the reduced ligand, H(2)L(B).  相似文献   

8.
A series of crystalline dinuclear rhodium complexes with different bridging diisocyano ligands and different counter ions have been studied by low-temperature crystallographic and solid-state spectroscopic techniques. The Rh-Rh distances vary from 4.5153(3) to 3.0988(7) angstroms, and the twist angles around the Rh-Rh line from 58.3(1) to 0 degree, both depending on the size and conformational rigidity of the bridging ligand. For very long distances as occur in the [Rh(2)(dimen)(4)](2+) salts the absorption is significantly blue-shifted compared to other complexes. For a given cation a shorter Rh-Rh bond gives a red shift of the phosphorescence emission band, indicating a smaller energy gap between the ground and emitting excited states. An exception occurs for the [Rh(2)(1,6-diisocyanohexane)(4)](2+) ion, in which dimer formation in the calixarate salt lengthens the Rh-Rh intramolecular bond length without affecting the emission spectrum.  相似文献   

9.
Three molecular structures are reported which utilize the NiN(2)S(2) ligands -, (bis(mercaptoethyl)diazacyclooctane)nickel and -', bis(mercaptoethyl)diazacycloheptane)nickel, as metallodithiolate ligands to rhodium in oxidation states i, ii and iii. For the Rh(I) complex, the NiN(2)S(2) unit behaves as a bidentate ligand to a square planar Rh(I)(CO)(PPh(3))(+) moiety with a hinge or dihedral angle (defined as the intersection of NiN(2)S(2) and S(2)Rh(C)(P) planes) of 115 degrees . Supported by -' ligands, the Rh(II) oxidation state occurs in a dirhodium C(4) paddlewheel complex wherein four NiN(2)S(2) units serve as bidentate bridging ligands to two singly-bonded Rh(II) ions at 2.893(8) A apart. A compilation of the remarkable range of M-M distances in paddlewheel complexes which use NiN(2)S(2) complexes as paddles is presented. The Rh(III) state is found as a tetrametallic [Rh(-')(3)](3+) cluster, roughly shaped like a boat propeller and structurally similar to tris(bipyridine)metal complexes.  相似文献   

10.
Herein we report a detailed investigation of the complexation properties of the macrocyclic decadentate receptor N,N'-Bis[(6-carboxy-2-pyridil)methyl]-4,13-diaza-18-crown-6 (H(2)bp18c6) toward different divalent metal ions [Zn(II), Cd(II), Pb(II), Sr(II), and Ca(II)] in aqueous solution. We have found that this ligand is especially suited for the complexation of large metal ions such as Sr(II) and Pb(II), which results in very high Pb(II)/Ca(II) and Pb(II)/Zn(II) selectivities (in fact, higher than those found for ligands widely used for the treatment of lead poisoning such as ethylenediaminetetraacetic acid (edta)), as well as in the highest Sr(II)/Ca(II) selectivity reported so far. These results have been rationalized on the basis of the structure of the complexes. X-ray crystal diffraction, (1)H and (13)C NMR spectroscopy, as well as theoretical calculations at the density functional theory (B3LYP) level have been performed. Our results indicate that for large metal ions such as Pb(II) and Sr(II) the most stable conformation is Δ(δλδ)(δλδ), while for Ca(II) our calculations predict the Δ(λδλ)(λδλ) form being the most stable one. The selectivity that bp18c6(2-) shows for Sr(II) over Ca(II) can be attributed to a better fit between the large Sr(II) ions and the relatively large crown fragment of the ligand. The X-ray crystal structure of the Pb(II) complex shows that the Δ(δλδ)(δλδ) conformation observed in solution is also maintained in the solid state. The Pb(II) ion is endocyclically coordinated, being directly bound to the 10 donor atoms of the ligand. The bond distances to the donor atoms of the pendant arms (2.55-2.60 ?) are substantially shorter than those between the metal ion and the donor atoms of the crown moiety (2.92-3.04 ?). This is a typical situation observed for the so-called hemidirected compounds, in which the Pb(II) lone pair is stereochemically active. The X-ray structures of the Zn(II) and Cd(II) complexes show that these metal ions are exocyclically coordinated by the ligand, which explains the high Pb(II)/Cd(II) and Pb(II)/Zn(II) selectivities. Our receptor bp18c6(2-) shows promise for application in chelation treatment of metal intoxication by Pb(II) and (90)Sr(II).  相似文献   

11.
Multiply charged ions from electrospray ionization (ESI) were observed for ruthenium-bidentate ligand complexes, such as [RuL2B]X2 and [(RuL2)2B]X4, where L is 2,2′-bipyridine, B are tetradentate ligands of 2,2′-bis(2′-pyridyl)bibenzimidazole and 2,6-bis(2′-pyridyl)benzodiimidazole, bidentate ligand of 2-(2′-pyridyl)benzimidazole and related compounds and X is CIO4- or CI-. ESI mass spectra showed a simple mass pattern for easy structural assignment and detecting impurities. The mass spectra for binuclear complexes provide a charge state distribution ranging from 4+ to 2+ for Ru(II)—Ru(II) compounds and 5+ to 2+ for Ru(II)—Rh(III) compounds. It was found that different multiply charged ions are generated by loss of counterions and by protonation/deprotonation at the proton site of ligands B. The abundances of these ions are qualitatively explained in terms of the acidity of metal complexes depending on the bridging ligand structures and the charge of the metal ions. Ions produced by removal of ligands were hardly observed.  相似文献   

12.
The catalytic hydrolysis of bis(p-nitrophenyl) phosphate (BNPP) and p-nitrophenyl phosphate (NPP) by metallomicelles composed of Cu(II) or Zn(II) complexes of bispyridine-containing alkanol ligands in CTAB micellar solution was investigated at 30 degrees C. The experimental results indicate that the complexes with a 1:1 ratio of ligands to metal ions for ligands 1 (1,7-bis(6-hydroxymethyl-2-pyridyl)-2,6-dioxaheptane) and 3 (1,4-bis[(6-hydroxymethyl-2-pyridyl)-2-oxapropyl]benzene) and a 1:2 ratio of ligands to metal ions for ligand 2 (1,14-bis(6-hydroxymethyl-2-pyridyl)-2,13-dioxatetradecane) in CATB micellar solution are the active species for the catalytic hydrolysis of BNPP and NPP, respectively. The ternary complex kinetic model for metallomicellar catalysis was employed to obtain the relative kinetic and thermodynamic parameters, which demonstrated the catalytic mechanism for the hydrolysis of BNPP and NPP by metallomicelles.  相似文献   

13.
The pyrazole-based diamide ligand N,N'-bis(2-pyridylmethyl)pyrazole-3,5-dicarboxamide (H(3)L) has been structurally characterised and successfully employed in the preparation of [2 x 2] grid-type complexes. Thus, the reaction of H(3)L with Cu(ClO(4))2.6H(2)O or Ni(ClO(4))2.6H(2)O in the presence of added base (NaOH) affords the tetranuclear complexes [M(4)(HL(4))].8H(2)O (1: M = Cu, 2: M = Ni). Employment of a mixture of the two metal salts under otherwise identical reaction conditions leads to the formation of the mixed-metal species [Cu(x)Ni(4-x)(HL)(4)].8H(2)O (x相似文献   

14.
Transition metal coordination compounds with the novel N2S2-donor ligand 1,6-bis(4(5)-imidazolyl)-2,5-dithiahexane (abbreviated bhdhx) with general formulae M(bhdhx)(NO3)2(M = Co, Ni, Cu) and M(bhdhx)(H2O)2(BF4)2 (M = Cu, Zn) have been isolated. In all compounds the ligand is tetradentate with both thioether sulphurs and imidazole nitrogens coordinating. In all compounds the metal ions are six-coordinated in a distorted octahedral geometry with either nitrates or water molecules as the fifth and sixth ligands. This is confirmed by the ligand field spectra, which agree with a distorted octahedral coordination. The distortion from octahedral, indicated by the ligand field spectrum of the cobalt nitrate compound is such that the S atoms of the ligands must be at a very large distance from the metal ion. A single crystal of Cu(bhdhx)(NO3)2 was used in a structure determination: orthorhombic space group Pbcn, a = 14.351(5), b = 8.554(3), c = 13.057(4) Å, Z = 4, and T = 293 K. The structure was solved by heavy atom techniques and refined by least-squares methods to a residual R value of 0.033 for 847 significant reflections. The copper ion is at a special position on a two-fold axis, which causes a two-fold symmetry in the ligand. The coordination geometry of the copper atom is distorted octahedral with the two nitrates and the two thioether sulphurs in a cis position, and the imidazole nitrogens trans. The copper to nitrogen distances are 1.933(4) Å, the copper to sulphur distances are 2.495(1) Å, and the copper to oxygen distances are 2.280(3) Å.  相似文献   

15.
Complexes of Cr(III) and Mn(II) with N′,N″-bis(3-carboxy-1-oxopropanyl) 2-amino-N-arylbenzamidine (H2L1) and N′,N″-bis(3-carboxy-1-oxophenelenyl) 2-amino-N-arylbenzamidine (H2L2) have been synthesized and characterized by various physico-chemical techniques. The vibrational spectral data are in agreement with coordination of amide and carboxylate oxygen of the ligands with the metal ions. The electronic spectra indicate octahedral geometry around the metal ions, supported by magnetic susceptibility measurements. The thermal behavior of chromium(III) complexes shows that uncoordinated nitrate is removed in the first step, followed by two water molecules and then decomposition of the ligand; manganese(II) complexes show two waters removed in the first step, followed by removal of the ligand in subsequent steps. Kinetic and thermodynamic parameters were computed from the thermal data using Coats and Redfern method, which confirm first order kinetics. The thermal stability of metal complexes has been compared. X-ray powder diffraction determines the cell parameters of the complexes.  相似文献   

16.
矫玉秋  孙强  范镝 《物理化学学报》2006,22(10):1196-1200
用MP2方法和CIS方法分别优化了Au(I)炔基配合物及相应炔烃的基态和激发态的结构. 计算结果表明, 在基态, 分子有向中间收缩的趋势, Au(I)的修饰作用减弱了配体内部原子间的成键作用. 随着分子链长增长, Au(I)与配体间的相互作用减弱; 激发态的电子跃迁减弱了, Au(I)与配体间的相互作用, 并且这种影响随着分子链增长而更加明显. 计算得出Au(I)炔基配合物体系的荧光发射光谱并发现其独特的发光性质, 说明取代H原子的—AuPH3比—H更具有离子性.  相似文献   

17.
The fluorescent compound N-substituted 2,6-bis(benzimidazol-2-yl)pyidine (1) has been synthesized. The fluorescent characteristics of the compound 1 and 2,6-bis(benzimidazol-2-yl)pyidine (2) and the complexes formed between the two compounds and different metal ions have also been investigated. The results show that the compound 1 possesses a specific ability to form complex with Cu(2+) ion, but the compound 2 have not such a property. It is proposed that the specific recognition ability of compound 1 to Cu(2+) may be attributed to the cyclic configuration of this compound in polar solvent.  相似文献   

18.
Crystallographically characterised 3,6-bis(2'-pyridyl)pyridazine (L) forms complexes with {(acac)2Ru} or {(bpy)2Ru2+}via one pyridyl-N/pyridazyl-N chelate site in mononuclear Ru(II) complexes (acac)2Ru(L), 1, and [(bpy)2Ru(L)](ClO4)2, [3](ClO4)2. Coordination of a second metal complex fragment is accompanied by deprotonation at the pyridazyl-C5 carbon {L --> (L - H+)-} to yield cyclometallated, asymmetrically bridged dinuclear complexes [(acac)2Ru(III)(mu-L - H+)Ru(III)(acac)2](ClO4), [2](ClO4), and [(bpy)2Ru(II)(mu-L - H+)Ru(II)(bpy)2](ClO4)3, [4](ClO4)3. The different electronic characteristics of the co-ligands, sigma donating acac- and pi accepting bpy, cause a wide variation in metal redox potentials which facilitates the isolation of the diruthenium(III) form in [2](ClO4) with antiferromagnetically coupled Ru(III) centres (J = -11.5 cm(-1)) and of a luminescent diruthenium(II) species in [4](ClO4)3. The electrogenerated mixed-valent Ru(II)Ru(III) states 2 and [4]4+ with comproportionation constants Kc > 10(8) are assumed to be localised with the Ru(III) ion bonded via the negatively charged pyridyl-N/pyridazyl-C5 chelate site of the bridging (L - H+)- ligand. In spectroelectrochemical experiments they show similar intervalence charge transfer bands of moderate intensity around 1300 nm and comparable g anisotropies (g1-g3 approximatly 0.5) in the EPR spectra. However, the individual g tensor components are distinctly higher for the pi acceptor ligated system [4]4+, signifying stabilised metal d orbitals.  相似文献   

19.
A series of RuN(6) dinuclear Ru-Hbpp complexes (Hbpp is the dinucleating tetraaza ligand 3,5-bis(pyridyl)pyrazole) of general formula {[Ru(II)(R(2)-trpy)(MeCN)](2)(μ-R(1)-bpp)}(3+), 10(3+)-14(3+), (R(1) = H, Me, or NO(2). and R(2) = H, Me, MeO; see Scheme 1) has been prepared from their Cl(-) or AcO(-) bridged precursors. The complexes have been characterized by UV-vis, NMR, CV, and some by X-ray. Complexes 10(3+)-14(3+), Ru(2)(II,II), were oxidized by 1 equiv in solution, leading to the mixed valence Ru(2)(II,III) complexes 10(4+)-14(4+) containing one unpaired electron and were characterized by EPR and UV-vis-near-IR, which showed metal-centered spin and the presence of low-energy IVCT bands. The H(ab) parameter indicates a relatively strong electronic coupling between the two ruthenium centers (class II). Further two electron oxidation in solution of the 10(3+)-14(3+) led to the formation of EPR silent Ru(2)(III,III) complexes 10(5+)-14(5+), that were further characterized by UV-vis-NIR. TD-DFT calculations are employed to assign the nature of the UV-vis transitions for the complexes in the various oxidation states, which are of metal to ligand charge transfer (MLCT) type for Ru(2)(II,II) and ligand to metal charge transfer (LMCT) type for Ru(2)(III,II) and Ru(2)(III,III).  相似文献   

20.
Five-coordinate metal complex ions of the type [ML](2+) [where M = Mn(II), Fe(II), Co(II), Ni(II), Cu(II), Zn(II) and L= 1,9-bis(2-pyridyl)-2,5,8-triazanonane (DIEN-(pyr)(2)) and 1,9-bis(2-imidazolyl)-2,5,8-triazanonane (DIEN-(imi)(2)] have been reacted with acetonitrile in the gas phase using a modified quadrupole ion trap mass spectrometer. The kinetics and thermodynamics of these reactions show that the reactivity of these complexes is affected by metal electronic structure and falls into three groups: Mn(II) and Ni(II) complexes are the most reactive, Fe(II) and Co(II) complexes exhibit intermediate reactivity, and Cu(II) and Zn(II) complexes are the least reactive. To help explain the experimental trends in reactivity, theoretical calculations have been used. Due to the relatively large size of the metal complexes involved, we have utilized a two-layered ONIOM method to perform geometry optimizations and single point energy calculations for the [ML](2+) and [ML + CH(3)CN](2+) systems. The calculations show that the reactant five-coordinate complexes ([ML](2+)) exhibit structures that are slightly distorted trigonal bipyramidal geometries, while the six-coordinate complexes ([ML + CH(3)CN](2+)) have geometries that are close to octahedral. The Delta G values obtained from the ONIOM calculations roughly agree with the experimental data, but the calculations fail to completely explain the trends for the different metal complexes. The failure to consider all possible isomers as well as adequately represent pi-d interactions for the metal complexes is the likely cause of this discrepancy. Using the angular overlap model (AOM) to obtain molecular orbital stabilization energies (MOSE) also fails to reproduce the experimental trends when only sigma interactions are considered but succeeds in explaining the trends when pi interactions are taken into account. These results indicate that the pi-donor character of the CH(3)CN plays a subtle, yet important, role in controlling the reactivity of these five-coordinate complexes. Also, the AOM calculations are consistent with the experimental data when the [ML](2+) complexes have high-spin trigonal bipyramidal configurations. Generally, these results suggest that ion-molecule reactions can be very sensitive to metal complex coordination geometry and thus may have some promise for providing gas-phase coordination structure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号