首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 13 毫秒
1.
Green crystals of (NpO(2))(2)(SeO(4))(H(2)O)(4), (NpO(2))(2)(SeO(4))(H(2)O)(2), and (NpO(2))(2)(SeO(4))(H(2)O) have been prepared by hydrothermal methods. The structures of these compounds have been characterized by single-crystal X-ray diffraction. (NpO(2))(2)(SeO(4))(H(2)O)(4), isostructural with (NpO(2))(2)(SO(4))(H(2)O)(4), is constructed from layers comprised of corner-sharing neptunyl(V) pentagonal bipyramids and selenate tetrahedra that are further linked by hydrogen bonding with water molecules. Each NpO(2)(+) cation binds to four other NpO(2)(+) units through cation-cation interactions (CCIs) to form a distorted "cationic square net" decorated by SeO(4)(2-) tetrahedra above and below the layer. Each selenate anion is bound to two neptunyl(V) cations through monodentate linkages. (NpO(2))(2)(SeO(4))(H(2)O)(2) is isostructural with the corresponding sulfate analogue as well. It consists of puckered layers of neptunyl(V) pentagonal bipyramids that are further connected by selenate tetrahedra to form a three-dimensional framework. The CCI pattern in the neptunyl layers of dihydrate is very similar to that of tetrahydrate; however, each SeO(4)(2-) tetrahedron is bound to four NpO(2)(+) cations in a mondentate manner. (NpO(2))(2)(SeO(4))(H(2)O) crystallizes in the monoclinic space group P2(1)/c, which differs from the (NpO(2))(2)(SO(4))(H(2)O) orthorhombic structure due to the slightly different connectivities between NpO(2)(+) cations and anionic ligands. The structure of (NpO(2))(2)(SeO(4))(H(2)O) adopts a three-dimensional network of distort neptunyl(V) pentagonal bipyramids decorated by selenate tetrahedra. Each NpO(2)(+) cation connects to four other NpO(2)(+) units through CCIs and also shares an equatorial coordinating oxygen atom with one of the other units in addition to the CC bond to form a dimer. Each SeO(4)(2-) tetrahedron is bound to five NpO(2)(+) cations in a monodentate manner. Magnetic measurements obtained from the powdered tetrahydrate are consistent with a ferromagnetic ordering of the neptunyl(V) spins at 8(1) K, with an average low temperature saturation moment of 1.98(8) μ(B) per Np. Well above the ordering temperature, the susceptibility follows Curie-Weiss behavior, with an average effective moment of 3.4(2) μ(B) per Np and a Weiss constant of 14(4) K. Correlations between lattice dimensionality and magnetic behavior are discussed.  相似文献   

2.
Dark green crystals of (NpO(2))(3)(OH)(SeO(3))(H(2)O)(2)·H(2)O (1) have been prepared by a hydrothermal reaction of neptunyl(V) and Na(2)SeO(4) in an aqueous solution at 150 °C, while green plates of Na(NpO(2))(SeO(3))(H(2)O) (2) have been synthesized by evaporation of a solution of neptunyl(V), H(2)SeO(4), and NaOH at room temperature. Both compounds have been characterized by single-crystal X-ray diffraction. The structure of compound contains three crystallographically unique Np atoms that are bonded to two O atoms to form a nearly linear O═Np═O NpO(2)(+) cation. Neighboring Np(5+) ions connect to each other through a bridging oxo ion from the neptunyl unit, a configuration known as cation-cation interactions (CCIs), to build a complex three-dimensional network. More specifically, each Np(1)O(2)(+), Np(2)O(2)(+), and Np(3)O(2)(+) cation is involved in three, five, and four CCIs with other units, respectively. The framework of neptunyl(V) pentagonal bipyramids is decorated by selenite trigonal pyramids with one-dimensional open channels where uncoordinated waters are trapped via hydrogen bonding interactions. Compound adopts uranophane-type [(NpO(2))(SeO(3))](-) layers, which are separated by Na(+) cations and water molecules. Within each layer, neptunyl(V) pentagonal bipyramids share equatorial edges with each other to form a single chain that is further connected by both monodentate and bidentate selenite trigonal pyramids. Crystallographic data: compound, monoclinic, P2(1)/c, Z = 4, a = 6.6363(8) ?, b = 15.440(2) ?, c = 11.583(1) ?, β = 103.549(1)°, V = 1153.8(2) ?(3), R(F) = 0.0387 for I > 2σ(I); compound (2), monoclinic, C2/m, Z = 4, a = 14.874(4) ?, b = 7.271(2) ?, c = 6.758(2) ?, β = 112.005(4)°, V = 677.7(3) ?(3), R(F) = 0.0477 for I > 2σ(I).  相似文献   

3.
Cation-cation interactions between NpO(2)(+) and UO(2)(2+) were studied at different temperatures (283.15 K to 358.15 K) and different ionic strengths (3-4.5 mol dm(-3)) by spectrophotometry and microcalorimetry. The cation-cation complex between NpO(2)(+) and UO(2)(2+) was weak and became stronger as the temperature was increased from 283.15 K to 358.15 K. The molar enthalpy of complexation was directly determined for the first time by microcalorimetry to be (4.2 ± 1.6) kJ mol(-1) at 298.15 K, in good agreement with the trend in the stability constant at different temperatures. The small and positive enthalpy and entropy of complexation support the argument that the cation-cation complex between NpO(2)(+) and UO(2)(2+) is of inner-sphere type. At each temperature, the stability constants of the cation-cation complex were found to increase as the ionic strength was increased. The specific ion interaction theory (SIT) was used to obtain the stability constants at infinite dilution and variable temperatures.  相似文献   

4.
Reaction of a (237)Np(V) stock solution in the presence of oxalic acid, calcium chloride, and sodium hydroxide under hydrothermal conditions produces single crystals of a neptunium(V) oxalate, Na(2)NpO(2)(C(2)O(4))OH.H(2)O. The structure consists of one-dimensional chains running down the a axis and is the first example of a neptunium(V) oxalate compound containing hydroxide anions.  相似文献   

5.
A Np(V) compound containing three-center cation-cation interations, K(NpO(2))(3)(H(2)O)Cl(4), has been prepared by reacting Np(V) with KCl in molten boric acid. This compound forms a three-dimensional channel structure that is constructed from both two- and three-center cation-cation interactions. Three new bonding modes for cation-cation interactions are added to the summary of all known Np(V) compounds.  相似文献   

6.
Two new selenite SrZn2(SeO3)3 (1) and SrZn0.68Cu0.32(SeO3)2 (2) were synthesized by the hydrothermal technique under autogeneous pressure. The crystal structure of both compounds was solved from X-ray diffraction data. Compound (1) was crystallized in P1¯ triclinic space group. However, compound (2) was crystallized in P21/n monoclinic space group. Infrared studies confirm the presence of all vibration bands in both structures. The temperature dependence of the magnetic susceptibility was measured in the temperature range of 10–300?K at different magnetic field intensities for both compounds. No magnetic properties were detected for compound (1). Mean while, compound (2) displayed antiferromagnetic properties.  相似文献   

7.
The solution coordination environments of pentavalent and hexavalent Np are studied by high-energy X-ray scattering. Np5+ and Np6+ both exist as the neptunyl moiety coordinated with five equatorial waters at Np-O distances of 2.46(2) and 2.37(2) A, respectively. NpO2(2+) also has a second coordination sphere of 6-10 waters at 4.37(3) A. The NpO2+ scattering is complicated by the presence of scattering at about 4.2 A that is attributed to Np-Np cation-cation interactions. The analysis of changing intensity of this peak as a function of Np concentration is used to determine a stability constant of Keq=0.74(9) M(-1) for the dimeric complex.  相似文献   

8.
The reaction of NpO(2) with SeO(2) in the presence of CsCl at 180 degrees C results in the formation of Np(NpO(2))(2)(SeO(3))(3) (1). The structure of 1 consists of three crystallographically unique Np centers with three different coordination environments in two different oxidation states. Np(1) is found in a neptunyl(V), O[double bond]Np[double bond]O(+), unit that is further ligated in the equatorial plane by three chelating SeO(3)(2-) anions to create a hexagonal bipyramidal NpO(8) unit. A second neptunyl(V) cation also occurs for Np(2); it is bound by four bridging selenite anions and by the oxo atom from the Np(1) neptunyl cation to form a pentagonal bipyramidal, NpO(7), unit. The third neptunium center, Np(3), which contains Np(IV), is found in a distorted NpO(8) dodecahedron. Np(3) is bound by five bridging selenite anions and by three neptunyl units via cation-cation interactions. The NpO(7) pentagonal bipyramids and NpO(8) hexagonal bipyramids share both corners and edges. Both of these polyhedra share corners via cation-cation interactions with the NpO(8) dodecahedra creating a three-dimensional structure with small channels that house the stereochemically active lone pair of electrons on the selenite anions. Magnetic susceptibility data follow Curie-Weiss behavior over the entire temperature range measured (5 < or = T < or = 320 K). The effective moment, mu(eff) = 2.28 mu(B), which represents an average over the three crystallographically inequivalent Np atoms, is within the expected range of values. There is no evidence of long-range ordering of the Np moments at temperatures down to 5 K, consistent with the negligible Weiss constant determined from fitting the susceptibility data. Crystallographic data: 1, orthorhombic, space group Pbca, a = 10.6216(5), b = 11.9695(6), and c = 17.8084(8) A and Z = 8 (T = 193 K).  相似文献   

9.
The reaction of elemental gold and selenic acid in Teflon-lined steel autoclaves leads to orange-yellow single crystals of Au2(SeO3)2(SeO4) (orthorhombic, Z = 4, Cmc2(1) (No. 36), a = 1689.1(3) pm, b = 630.13(8) pm, c = 832.7(1) pm, V = 886.2(2) angstroms3, Rall = 0.0452). In the crystal structure, Au3+ is surrounded by four oxygen atoms of just as many monodentate SeO3(2-) ions in a square planar manner. The linkage of the polyhedra leads to double chains in the [001] direction which are connected to puckered layers by SeO4(2-) groups. The noncentrosymmetric space group could be proved by the observation of an SHG effect upon irridation at 1064 nm that shows an efficiency of about 43% compared to a KDP reference. Upon heating, Au2(SeO3)2(SeO4) decomposes at about 370 degrees C in one step yielding elemental gold. The presence of selenite and selenate groups in the compounds is also obvious from the IR and Raman spectra which show the characteristic bands of both species. Furthermore, solid-state NMR spectra reveal the different surroundings of the selenium atoms in the compound.  相似文献   

10.
Five new d0 transition metal iodates, BaTi(IO3)6, LaTiO(IO3)5, Ba2VO2(IO3)4.(IO3), K2MoO2(IO3)4, and BaMoO2(IO3)4.H2O, have been synthesized by hydrothermal methods using Ba(OH)2.8H2O, La2O3, K2CO3, TiO2, V2O5, MoO3, and HIO3 as reagents. The structures of these compounds were determined by single-crystal X-ray diffraction. All of the reported materials have zero-dimensional or pseudo-one-dimensional crystal structures composed of MO6 (M = Ti4+, V5+, or Mo6+) octahedra connected to IO3 polyhedra. Infrared and Raman spectroscopy, thermogravimetric analysis, and UV-vis diffuse reflectance spectroscopy are also presented. Crystal data: BaTi(IO3)6, trigonal, space group R-3 (No. 148), with a = b = 11.4711(10) A, c = 11.1465(17) A, V = 1270.2(2) A3, and Z = 3; LaTiO(IO3)5, monoclinic, space group P2(1)/n (No. 14), with a = 7.4798(10) A, b = 18.065(2) A, c = 10.4843(14) A, beta = 91.742(2) degrees , V = 1416.0(3) A3, and Z = 4; Ba2VO2(IO3)4.(IO3), monoclinic, space group P2(1)/c (No. 14), with a = 7.5012(9) A, b = 33.032(4) A, c = 7.2150(9) A, beta = 116.612(2) degrees , V = 1598.3(3) A3, and Z = 4; K2MoO2(IO3)4, monoclinic, space group C2/c (No. 15), with a = 12.959(2) A, b = 6.0793(9) A, c = 17.748(3) A, beta = 102.410(4) degrees , V = 1365.5(4) A3, and Z = 4; BaMoO2(IO3)4.H(2)O, monoclinic, space group P2(1)/n (No. 14), with a = 13.3368(17) A, b = 5.6846(7) A, c = 18.405(2) A, beta = 103.636(2) degrees , V = 1356.0(3) A3, and Z = 4.  相似文献   

11.
Two americium(III) iodates, beta-Am(IO3)3 (I) and alpha-Am(IO3)3 (II), have been prepared from the aqueous reactions of Am(III) with KIO(4) at 180 degrees C and have been characterized by single-crystal X-ray diffraction, diffuse reflectance, and Raman spectroscopy. The alpha-form is consistent with the known structure type I of anhydrous lanthanide iodates. It consists of a three-dimensional network of pyramidal iodate groups bridging [AmO8] polyhedra where each of the americium ions are coordinated to eight iodate ligands. The beta-form reveals a novel architecture that is unknown within the f-element iodate series. beta-Am(IO3)3 exhibits a two-dimensional layered structure with nine-coordinate Am(III) atoms. Three crystallographically unique pyramidal iodate anions link the Am atoms into corrugated sheets that interact with one another through intermolecular IO3-...IO3- interactions forming dimeric I2O10 units. One of these anions utilizes all three O atoms to simultaneously bridge three Am atoms. The other two iodate ligands bridge only two Am atoms and have one terminal O atom. In contrast to alpha-Am(IO3)3, where the [IO3] ligands are solely corner-sharing with [AmO8] polyhedra, a complex arrangement of corner- and edge-sharing mu2- and mu3-[IO3] pyramids can be found in beta-Am(IO3)3. Crystallographic data: I, monoclinic, space group P2(1)/n, a = 8.871(3) A, b = 5.933(2) A, c = 15.315(4) A, beta = 96.948(4) degrees , V = 800.1(4) A(3), Z = 4; II, monoclinic, space group P2(1)/c, a = 7.243(2) A, b = 8.538(3) A, c = 13.513(5) A, beta = 100.123(6) degrees , V = 822.7(5) A(3), Z = 4.  相似文献   

12.
The hydrothermal reaction of elemental Ag, or water-soluble silver sources, with UO3 and I2O5 at 200 degrees C for 5 days yields Ag4(UO2)4(IO3)2(IO4)2O2 in the form of orange fibrous needles. Single-crystal X-ray diffraction studies on this compound reveal a highly complex network structure consisting of three interconnected low-dimensional substructures. The first of these substructures are ribbons of UO8 hexagonal bipyramids that edge-share to form one-dimensional chains. These units further edge-share with pentagonal bipyramidal UO7 units to create ribbons. The edges of the ribbons are partially terminated by tetraoxoiodate(V), [IO4]3-, anions. The uranium oxide ribbons are joined by bridging iodate ligands to yield two-dimensional undulating sheets. These sheets help to form, and are linked together by, one-dimensional chains of edge-sharing AgO7 capped octahedral units and ribbons formed by corner-sharing capped trigonal planar AgO4 polyhedra, AgO6 capped square pyramids, and AgO6 octahedra. The [IO4]3- anions in Ag4(UO2)4(IO3)2)(IO4)2O2 are tetraoxoiodate(V), not metaperiodate, and contain I(V) with a stereochemically active lone-pair. Bond valence sum calculations are consistent with this formulation. Differential scanning calorimetry measurements show distinctly different thermal behavior of Ag4(UO2)4(IO3)2(IO4)2O2 versus other uranyl iodate compounds with endotherms at 479 and 494 degrees C. Density functional theory (DFT) calculations demonstrate that the approximate C2v geometry of the [IO4]3- anion can be attributed to a second-order Jahn-Teller distortion. DFT optimized geometry for the [IO4]3- anion is in good agreement with those measured from single-crystal X-ray diffraction studies on Ag4(UO2)4(IO3)2(IO4)2O2.  相似文献   

13.
CoSm(SeO3)2Cl, CuGd(SeO3)2Cl, MnSm(SeO3)2Cl, CuGd2(SeO3)4 and CuSm2(SeO3)4: Transition Metal containing Selenites of Samarium and Gadolinum The reaction of CoCl2, Sm2O3, and SeO2 in evacuated silica ampoules lead to blue single crystals of CoSm(SeO3)2Cl (triclinic, , Z = 4, a = 712.3(1), b = 889.5(2), c = 1216.2(2) pm, α = 72.25(1)°, β = 71.27(1)°, γ = 72.08(1)°, Rall = 0.0586). If MnCl2 is used in the reaction light pink single crystals of MnSm(SeO3)2Cl (triclinic, , Z = 2, a = 700.8(2), b = 724.1(2), c = 803.4(2) pm, α = 86.90(3)°, β = 71.57(3)°, γ = 64.33(3)°, Rall = 0.0875) are obtained. Green single crystals of CuGd2(SeO3)2Cl (triclinic, , Z = 4, a = 704.3(4), b = 909.6(4), c = 1201.0(7) pm, α = 70.84(4)°, β = 73.01(4)°, γ = 70.69(4)°, Rall = 0.0450) form analogously in the reaction of CuCl2 and Gd2O3 with SeO2. CoSm(SeO3)2Cl contains [CoO4Cl2] octahedra, which are connected via one edge and one vertex to infinite chains. The Mn2+ ions in MnSm(SeO3)2Cl are also octahedrally coordinated by four oxygen and two chlorine ligands. The linkage of the polyhedra to chains occurs exclusively via edges. Both, the cobalt and the manganese compound show the Sm3+ ions in eight and ninefold coordination of oxygen atoms and chloride ions. In CuGd(SeO3)2Cl the Cu2+ ions are coordinated by three oxygen atoms and one Cl ion in a distorted square planar manner. One further Cl and one further oxygen ligand complete the [CuO3Cl] units yielding significantly elongated octahedra. The latter are again connected to chains via two common edges. For the Gd3+ ions coordination numbers of ?8 + 1”? and nine were found. Single crystals of the deep blue selenites CuM2(SeO3)4 (M = Sm/Gd, monoclinic, P21/c, a = 1050.4(3)/1051.0(2), b = 696.6(2)/693.5(1), c = 822.5(2)/818.5(2) pm, β = 110.48(2)°/110.53(2)°, Rall = 0.0341/0.0531) can be obtained from reactions of the oxides Sm2O3 and Gd2O3, respectively, with CuO and SeO2. The crystal structure contains square planar [CuO4] groups and irregular [MO9] polyhedra.  相似文献   

14.
Summary Single crystal X-ray data of the hydrothermally grown new phase Li2Cu3(SeO3)2(SeO4)2 were measured with a four-circle diffractometer up to sin /=0.81 Å–1 [I2/a,Z=4,V=1175.5 Å3,a=16.293(6),b=5.007(2),c=14.448(6) Å, = 94.21(1)°]. The structure was determined by direct and Fourier methods and refined toR=0.034,R w =0.027 for 2 086 independent reflections.Cu(1)[4+1]O5 forms a tetragonal pyramid, Cu(2)[4 + 2]O6 is a strongly elongated octahedron. The Li atom is surrounded by four O atoms forming a distorted tetrahedron. Se(IV)O3 and Se(VI)O4 groups are in accordance to literature, mean Se-O bond lengths are 1.714 and 1.644 Å.
Die Kristallstruktur von Li2Cu3(SeO3)2(SeO4)2
Zusammenfassung Einkristall-Röntgendaten der hydrothermal gezüchteten neuen Phase Li2Cu3(SeO3)2(SeO4)2 wurden mit einem Vierkreisdiffraktometer im Bereich bis zu sin /=0.81 Å–1 gemessen [I2/a,Z=4,V=1175.5 Å3,a=16.293(6),b=5.007(2),c=14.448(6) Å, =94.21(1)°]. Die Kristallstruktur wurde mittels direkter und Fourier-Methoden bestimmt und für 2 086 unabhängige Reflexe zuR=0.034,R w =0.027 verfeinert.Cu(1)[4+1]O5 bildet eine tetragonale Pyramide, Cu(2)[4+2]O6 ist ein stark verlängertes Oktaeder. Das Li-Atom ist von vier O-Atomen in Gestalt eines verzerrten Tetraeders umgeben. Die Se(IV)O3-und Se(VI)O4-Gruppen entsprechen der Literatur, die mittleren Se-O-Abstände betragen 1.714 und 1.644 Å.
  相似文献   

15.
Two Np(5+) silicates, Li(6)(NpO(2))(4)(H(2)Si(2)O(7))(HSiO(4))(2)(H(2)O)(4) (LiNpSi1) and K(3)(NpO(2))(3)(SiO(3)OH)(2) (KNpSi1), were synthesized by hydrothermal methods. The crystal structures were determined using direct methods and refined on the basis of F(2) for all unique data collected with Mo Kalpha radation and an APEX II CCD detector. LiNpSi1 crystallizes in orthorhombic space group Pnma with a =13.189(6) A, b = 7.917(3) A, c = 10.708(5) A, V = 1118.1(8) A3, and Z = 2. KNpSi1 is hexagonal, P62m, a = 9.734(1) A, c = 3.8817(7) A, V = 318.50(8) A3, and Z = 1. LiNpSi1 contains chains of edge-sharing neptunyl pentagonal bipyramids linked into two-dimensional sheets through direct linkages between the neptunyl polyhedra and the vertex sharing of the silicate tetrahedra. The structure contains both sorosilicate and nesosilicate units, resulting in a new complex neptunyl silicate sheet. KNpSi1 contains edge-sharing neptunyl square bipyramids linked into a framework structure through the sharing of vertices with the silicate tetrahedra. The neptunyl silicate framework contains channels approximately 6.0 A in diameter. These structures exhibit significant departures from other reported Np(5+) and U(6+) compounds and represent the first reported Np(5+) silicate structures.  相似文献   

16.
The geometries, harmonic vibrational frequencies, relative energetics, and enthalpies of formation of (CH(3)IO(3)) isomers and the reaction CH(3)O(2) + IO have been investigated using quantum mechanical methods. Optimization has been performed at the MP2 level of theory, using all electron and effective core potential, ECP, computational techniques. The relative energetics has been studied by single-point calculations at the CCSD(T) level. Methyl iodate, CH(3)OIO(2), is found to be the lowest-energy isomer showing particular stabilization. The two nascent association minima, CH(3)OOOI and CH(3)OOIO, show similar stabilities, and they are considerably higher located than CH(3)OIO(2). Interisomerization barriers have been determined, along with the transition states involved in various pathways of the reaction CH(3)O(2) + IO.  相似文献   

17.
Ag9I3(SeO4)2(IO3)2 was obtained for the first time by reacting a stoichiometric mixture of Ag2O, AgI and SeO2 at elevated oxygen pressure (255 MPa) and at a temperature of 500 °C. Ag9I3(SeO4)2(IO3)2 was characterized by X‐ray powder diffraction, differential scanning calorimetry, impedance spectroscopy and single crystal structure analysis. The crystal structure was solved by direct methods (I23, Z = 8, a = 12.9584(6) Å, V = 2175.9(2) Å3 and R1 = 2.70 %). The crystal structure consists of isolated SeO4 tetrahedra and trigonal IO3 pyramids separated by Ag+ and I ions. Each four of the SeO42– and IO3 anions aggregate, forming a novel supramolecular building block, showing a hetero‐cubane like structure. According to the results of impedance measurements, Ag9I3(SeO4)2(IO3)2 is a good silver ion conductor. The compound shows an abrupt increase in the ionic conductivity in the temperature range of 115 to 147 °C, and has a silver ion conductivity of 7.1 × 10–5 Ω–1 cm–1 at 25 °C. The activation energy for silver ion conduction is 0.45 eV, in the temperature range from 25 to 115°.  相似文献   

18.
The hydrothermal reaction of MoO(3) with BaH(3)IO(6) at 180 degrees C for 3 days results in the formation of Ba[(MoO(2))(6)(IO(4))(2)O(4)] x H(2)O (1). Under similar conditions, the reaction of Ba(OH)(2) x 8H(2)O with MoO(3) and Ba(IO(4))(2) x 6H(2)O yields Ba(3)[(MoO(2))(2)(IO(6))(2)] x 2H(2)O (2). The structure of 1, determined by single-crystal X-ray diffraction, consists of corner- and edge-sharing distorted MoO(6) octahedra that create two-dimensional slabs. Contained within this molybdenum oxide framework are approximately C(2v) tetraoxoiodate(V) anions, IO(4)(3-), that are involved in bonding with five Mo(VI) centers. The two equatorial oxygen atoms of the IO(4)(3-) anion chelate a single Mo(VI) center, whereas the axial atoms are mu(3)-oxo groups and complete the octahedra of four MoO(6) units. The coordination of the tetraoxoiodate(V) anion to these five highly electropositive centers is probably responsible for stabilizing the substantial anionic charge of this anion. The Ba(2+) cations separate the layers from one another and form long ionic contacts with neighboring oxygen atoms and a water molecule. Compound 2 also contains distorted MoO(6) octahedra. However, these solely edge-share with octahedral hexaoxoiodate(VII), IO(6)(5-), anions to form zigzagging one-dimensional, (1)(infinity)[(MoO(2))(IO(6))](3-), chains that are polar. These chains are separated from one another by Ba(2+) cations that are coordinated by additional water molecules. Bond valence sums for the iodine atoms in 1 and 2 are 5.01 and 7.03, respectively. Crystallographic data: 1, monoclinic, space group C2/c, a = 13.584(1) A, b = 7.3977(7) A, c = 20.736(2) A, beta = 108.244(2) degrees, Z = 4; 2, orthorhombic, space group Fdd2, a = 13.356(7) A, b = 45.54(2) A, c = 4.867(3) A, Z = 8.  相似文献   

19.
Five new vanadium selenites, Ca(2)(VO(2))(2)(SeO(3))(3)(H(2)O)(2), Sr(2)(VO(2))(2)(SeO(3))(3), Ba(V(2)O(5))(SeO(3)), Sr(4)(VO(2))(2)(SeO(3))(4)(Se(2)O(5)), and Pb(4)(VO(2))(2)(SeO(3))(4)(Se(2)O(5)), have been synthesized and characterized. Their crystal structures were determined by single crystal X-ray diffraction. The compounds exhibit one- or two-dimensional structures consisting of corner- and edge-shared VO(4), VO(5), VO(6), and SeO(3) polyhedra. Of the reported materials, A(4)(VO(2))(2)(SeO(3))(4)(Se(2)O(5)) (A = Sr(2+) or Pb(2+)) are noncentrosymmetric (NCS) and polar. Powder second-harmonic generation (SHG) measurements revealed SHG efficiencies of approximately 130 and 150 × α-SiO(2) for Sr(4)(VO(2))(2)(SeO(3))(4)(Se(2)O(5)) and Pb(4)(VO(2))(2)(SeO(3))(4)(Se(2)O(5)), respectively. Piezoelectric charge constants of 43 and 53 pm/V, and pyroelectric coefficients of -27 and -42 μC/m(2)·K at 70 °C were obtained for Sr(4)(VO(2))(2)(SeO(3))(4)(Se(2)O(5)) and Pb(4)(VO(2))(2)(SeO(3))(4)(Se(2)O(5)), respectively. Frequency dependent polarization measurements confirmed that the materials are not ferroelectric, that is, the observed polarization cannot be reversed. In addition, the lone-pair on the Se(4+) cation may be considered as stereo-active consistent with calculations. For all of the reported materials, infrared, UV-vis, thermogravimetric, and differential thermal analysis measurements were performed. Crystal data: Ca(2)(VO(2))(2)(SeO(3))(3)(H(2)O)(2), orthorhombic, space group Pnma (No. 62), a = 7.827(4) ?, b = 16.764(5) ?, c = 9.679(5) ?, V = 1270.1(9) ?(3), and Z = 4; Sr(2)(VO(2))(2)(SeO(3))(3), monoclinic, space group P2(1)/c (No. 12), a = 14.739(13) ?, b = 9.788(8) ?, c = 8.440(7) ?, β = 96.881(11)°, V = 1208.8(18) ?(3), and Z = 4; Ba(V(2)O(5))(SeO(3)), orthorhombic, space group Pnma (No. 62), a = 13.9287(7) ?, b = 5.3787(3) ?, c = 8.9853(5) ?, V = 673.16(6) ?(3), and Z = 4; Sr(4)(VO(2))(2)(SeO(3))(4)(Se(2)O(5)), orthorhombic, space group Fdd2 (No. 43), a = 25.161(3) ?, b = 12.1579(15) ?, c = 12.8592(16) ?, V = 3933.7(8) ?(3), and Z = 8; Pb(4)(VO(2))(2)(SeO(3))(4)(Se(2)O(5)), orthorhombic, space group Fdd2 (No. 43), a = 25.029(2) ?, b = 12.2147(10) ?, c = 13.0154(10) ?, V = 3979.1(6) ?(3), and Z = 8.  相似文献   

20.
Extensive ab inito computations have been carried out to study the equilibrium structure, infrared spectra, and bonding characteristics of a variety of hydrated NpO2(CO3)m(q-) complexes by considering the solvent as a polarizable dielectric continuum as well as the corresponding anhydrate complexes in the gas phase. The computed structural parameters and vibrational results at the MP2 level in aqueous solution are in good agreement with Clark et al.'s experiments and provide realistic pictures of the neptunyl complexes in an aqueous environment. Our computed hydration energies reveal that the complex with water molecules directly bound to it yields the best results. Our analysis of the nature of the bonding of neptunyl complexes provides insight into the nature of 6d and 5f bonding in actinide complexes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号