首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A sensitive liquid chromatography?Celectrospray ionization?Ctandem mass spectrometry (LC?CESI?CMS?CMS) method was developed and validated for the quantification of cepharanthine (CEP) in beagle dog plasma. The chromatographic separation was performed on an Agilent-C18 column and the mobile phase was composed of methanol:water with 10 mM ammonium acetate (20:80, v/v). Detection was operated in the positive ion mode and the tandem mass spectrometer was tuned in the multiple reactions monitoring mode (MRM) to monitor m/z transitions 607 ?? 365 for CEP and 285 ?? 193 for the internal standard (IS) diazepam. This method exhibited a linear range of 5?C2,500 ng mL?1. The precision (RSD%) and accuracy (RME%) of the assay were <8.7 and 2.4%, respectively. The limit of quantification was 5 ng mL?1 and no significant matrix effect was observed. The validated method has been successfully applied to pharmacokinetic study of CEP in beagle dog.  相似文献   

2.
A sensitive and specific tandem mass spectrometric (MS–MS) method was developed and validated for the determination of dydrogesterone (Duphaston®), an orally active synthetic progestogen, in human plasma. Multiple reaction monitoring (MRM) scans at m/z 313.1 > 105.5 (dydrogesterone) and m/z 393 > 147 (dexamethasone, internal standard) were selected to determine dydrogesterone by the internal standard method. Linear correlations (r: ~0.99 ± 0.05) of the calibration curves were established over the concentration range 10–60 ng mL?1 with a lower limit of quantification (LLQ) of 10 ng mL?1 (RSD% 14.9 and %DEVs ?10.5 to +15.6). Solid-phase extraction (SPE) technique was used for extraction of dydrogesterone and internal standard from patient plasma samples using Oasis® Max C18 cartridges. Ion suppression studies indicated negligible effects of plasma matrix on the mass ions detection of dydrogesterone and IS, when measured in MRM mode. Validation data showed that RSD% values were <22.0%, whereas %DEV values were in the range of ?20.2 to +13.3 for intra- and inter-day precision and accuracy, respectively. Analytical recoveries of dydrogesterone from supplemented plasma samples with the drug were in the range of 100.7–112%, indicating the efficiency of the SPE for separation of dydrogesterone from human plasma. Stability studies conducted at ?20 °C, showed that dydrogesterone was stable in plasma as indicated from the measured degradation kinetic parameters. The developed method was applied for monitoring plasma levels of dydrogesterone in 25 patients treated with Duphaston® tablets at a dose of 10 mg three times daily. Mean plasma concentration of 16.1 ± 3.5 ng mL?1 of dydrogesterone were measured at the steady state. The data suggest the utility of tandem mass method in therapeutic drug monitoring of plasma levels of dydrogesterone in gynecological disorders treated with Duphaston® tablets.  相似文献   

3.
A sensitive and selective liquid chromatography tandem mass spectrometry (LC-MS-MS) method for determination of doxapram hydrochloride in rabbit plasma was developed. After addition of urapidil hydrochloride as internal standard (IS), protein precipitation by 10% trichloroacetic acid in methanol (w/v) was used as sample preparation. Chromatographic separation was achieved on a Zorbax SB-C18 (2.1 mm × 50 mm, 3.5 μm) column with acetonitrile–water as mobile phase with gradient elution. Electrospray ionization (ESI) source was applied and operated in positive ion mode; multiple reaction monitoring (MRM) mode was used for quantification using target fragment ions m/z 378.9 → 291.8 for doxapram hydrochloride and m/z 387.9 → 204.6 for the IS. Calibration plots were linear over the range of 2–1000 ng mL?1 for doxapram hydrochloride in plasma. Lower limit of quantitation (LLOQ) for doxapram hydrochloride was 2 ng mL?1. Mean recovery of doxapram hydrochloride from plasma was in the range 83.7–91.5%. RSD of intra-day and inter-day precision were less than 9%, respectively. This method is simple and sensitive enough to be used in pharmacokinetic research for determination of doxapram hydrochloride in rabbit plasma.  相似文献   

4.
Plant extracts of Staphylea L. exhibit a number of biological activities which are presumably attributed to ursolic acid. A rapid and specific tandem mass spectrometric (MS-MS) assay for the quantification of ursolic acid in the leaves of four species of Staphylea L. (Bladdernut) and in the leaves of S. pinnata L. during ontogenesis, was developed and validated. The samples were analyzed by flow injection analysis without chromatographic separation using a transport liquid of methanol/water/formic acid (80:20:0.1 v/v/v) at a flow-rate of 0.2 mL min−1. The run cycle time was ~2-3 min injection-to-injection. Quantification was achieved using multiple reaction monitoring at MRM transition m/z 439 > 203. Calibration curves were linear over the concentration range of 2–20 μg mL−1 with a lower limit of quantification of 2 μg mL−1 (1.8 ± 0.297, RSD: 0.165). Validation data showed that the RSD% values were in the range of 1.8 to 6.8%, whereas the % DEVs ranged from −18 to −2% indicating reasonable and acceptable precision and accuracy, respectively. A recovery percent of 106.8 ± 10.3 of ursolic acid from spiked extracts samples, indicated the specificity and reliability of tandem mass procedure for determination of ursolic acid in the plant extracts. The derived data of sample analysis showed different contents of ursolic acid among various Staphylea species. The highest content of ursolic acid was found in the leaves extract of S. pinnata L. Additionally, the highest amount of ursolic acid accumulated in the leaves of S. pinnata L. was in the August /September period of the year. Smaller amounts of ursolic acid were found in samples collected before and after that time. The results obtained serve as a justification of determining the most appropriate time for collecting plant material as a source of ursolic acid.  相似文献   

5.
A sensitive and specific liquid chromatography–electrospray ionization–tandem mass spectrometry method has been developed and validated for the quantification of huperzine A in human plasma. After the addition of trimetazidine, the internal standard (IS) and sodium hydroxide, plasma samples were extracted using 5 mL ethyl acetate. The compounds were separated on an Agilent Zorbax SB C18 column (100 mm × 2.1 mm ID, dp 3.5 μm) using an elution system of 10 mM ammonium acetate solution–methanol–formic acid (18:82:0.1, v/v) as the mobile phase. The quantification of target compounds was obtained by using multiple reaction monitoring (MRM) transitions: m/z 243.1, 210.1 and 267.2, 166.0 were measured in positive mode for huperzine A and IS. Linearity was established for the range of concentrations 0.01–4.0 ng mL?1 with a coefficient of correlation (r) of 0.9991. The lower limit of quantification (LLOQ) was identifiable and reproducible at 0.01 ng mL?1. The method has been successfully applied to study the pharmacokinetics of huperzine A in healthy male Chinese volunteers.  相似文献   

6.
A sensitive and specific liquid chromatography–tandem mass spectrometry (LC–MS–MS) method was developed and validated for the quantification of poricoic acid A (PAA) in rat plasma. The plasma samples were precipitated by protein precipitation with methanol. Glycyrrhetic acid was used as the IS. Chromatography was performed on a Dionex C18 120 Å (4.6 × 250 mm, 5 μm) column with the mobile phase composed of acetonitrile–water (90:10, v/v) at a flow rate of 0.8 mL min?1. A tandem mass spectrometer equipped with an ESI source was used as the detector and was operated in the negative ion mode. Quantification was performed using multiple reaction monitoring (MRM) of the transitions m/z 497.4 → 423.3 and m/z 469.2 → 425.1 for PAA and IS, respectively. The calibration curves were linear over the range of 5–5,000 ng mL?1 (r 2 = 0.9966) and the lower limit of quantification (LLOQ) was 5 ng mL?1. In this range, RSDs were <10% for intra-assay and inter-assay precisions. The accuracy expressed by deviation (DEV) was <6%, and the extraction recoveries of QC samples were >78%. The validated method was successfully used to study the pharmacokinetics of PAA in rats after intravenous administration at a dose of 1.0, 2.5 and 5.0 mg kg?1 and oral administration at a dose of 25, 50 and 100 mg kg?1, respectively. The relative bioavailability of PAA in rats following oral administration was achieved.  相似文献   

7.
A sensitive LC–MS–MS method with electrospray ionization has been developed for analysis of mirtazapine in rat plasma. After addition of diazepam as internal standard, liquid–liquid extraction was used to produce a protein-free extract. Chromatographic separation was achieved on a 150 × 4.6 mm, 5 μm particle, ODS column with 84:16 (v/v) methanol–water containing 0.1% ammonium acetate and 0.01% glacial acetic acid as mobile phase. LC–MS–MS was performed in selected-ion-monitoring (SIM) mode using target fragment ions m/z 195.09 for mirtazapine and m/z 192.80 for the IS. Calibration plots were linear over the range of 0.516–618.8 ng mL?1. The lower limit of quantification was 0.516 ng mL?1. Intra-day and inter-day precision were better than 12.6 and 8.8%, respectively. Mean recovery of mirtazapine from plasma was in the range 87.41–90.06%; average recovery was 88.40% (RSD 3.95%). Significant gender differences between mirtazapine pharmacokinetic data were observed in this study.  相似文献   

8.
9.
A highly sensitive liquid chromatography–tandem mass spectrometry (LC–MS–MS) method for the determination of troxerutin in human plasma using tramadol as internal standard (IS) has been developed and validated. Sample preparation involved liquid–liquid extraction with ethyl acetate–isopropanol (95:5, v/v). The analyte and IS were separated by RP–LC with gradient elution using 10 mM ammonium acetate containing 0.1% formic acid and methanol at a flow rate of 0.9 mL min?1. LC–MS–MS in the positive ion mode employed multiple reaction monitoring of the transitions at m/z 743.2→435.3 and m/z 264.1→58.0 for troxerutin and IS, respectively. The assay was linear in the concentration range 0.01–10 ng mL?1 with precision and accuracy within assay variability limits as per FDA guidelines. The assay was successfully applied to a pharmacokinetic study involving oral administration of 300 mg troxerutin to eight healthy Chinese volunteers.  相似文献   

10.
The purpose of the study is first to develop a sensitive and rapid ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS-MS) method for the determination of a new synthesized tubulin ligand, N-(2,6-dimethoxypyridine-3-yl)-9-methylcarbazole-3-sulfonamide (IG-105), in rat plasma. The analyte and internal standard (carbamazepine) were extracted by liquid/liquid extraction with petroleum ether/diethyl ether (2:1, v/v). The chromatographic separation was performed on an Acquity UPLC BEH C18 column with a mobile phase gradient consisting of methanol and water. The mass spectrometric detection was performed by triple-quadrupole mass spectrometry with multiple reaction monitoring (MRM) via an ESI source operating in positive ionization mode. The mass transitions m/z 398??153 and m/z 237??194 were used to assay the analyte and IS, respectively. The method demonstrated good linearity over a concentration range of 0.67?C333.33 ng mL?1, and the lower limit of quantitation (LLOQ) of IG-105 was 0.67 ng mL?1. The intra- and inter-day precision (relative standard deviation) values were <6%, and the accuracy (relative error) was <5% at three quality control levels. The extraction recovery of IG-105 and IS was 84.45 and 88.5%, respectively. Finally, the validated method was successfully applied to a pharmacokinetic study of IG-105 in rat plasma.  相似文献   

11.
A fast, sensitive, and specific LC?CMS?CMS method for determination of quinine (QN) and doxycycline (DOX) in rat plasma has been developed and validated. QN, DOX, and cimetidine (internal standard, IS) were extracted from the plasma by protein precipitation. The compounds were separated on a C18 column with methanol?C0.1% aqueous formic acid 70:30 (v/v) as mobile phase at a flow rate of 0.5 mL min?1 (split 1:3). Detection was by positive electrospray ionization (ESI+) in multiple reaction monitoring (MRM) mode, monitoring the transitions 325.0 ?? 307.0, 445.0 ?? 428.1, and 252.8 ?? 159.0, for QN, DOX, and IS, respectively. The analysis was carried out in 2.0 min and the method was linear in the plasma concentration range 5?C5,000 ng mL?1. The mean extraction recoveries for QN, DOX, and IS from plasma were 89.4, 90.5, and 86.3%, respectively. The method was validated for linearity, precision, accuracy, specificity, and stability; the results obtained were within the acceptable range. The proposed method was successfully applied to the determination of QN and DOX in rat plasma samples to support pharmacokinetic studies.  相似文献   

12.
A sensitive and selective method is described for the determination of β-artemether (AM) and its metabolite dihydroartemisinin (DHA) in human plasma and urine using artemisinin (IS) as internal standard. The method consists of a liquid-liquid extraction using 2,2,4-trimethylpentane – ethyl acetate (7:3 v/v) with subsequent evaporation of the supernatant to dryness followed by the analysis of the reconstituted sample by liquid chromatography – mass spectrometry (LC-MS) using positive electrospray ionisation (ESI). The acquisition was performed using a mass range scan and the ions (MH+?CH3OH) m/z 267.2, (MH+?H2O) m/z 267.2 and (MH+) m/z 283.2 for AM, DHA and IS respectively were used for compound quantifications. Chromatography was performed on a C18 reversed-phase column using a gradient of acetonitrile – ammonium acetate 10 mM, glacial acetic acid 0.1% as a mobile phase. The method was validated over a concentration range of 10–1000 ng mL?1 using 1 mL of human plasma per assay and over a concentration range of 5–500 ng mL?1 using 2 mL of human urine per assay. The method was applied to the quantitation of β-artemether and dihydroartemisinin in human plasma and urine of volunteers participating in a drug pharmacokinetic study.  相似文献   

13.
A sensitive and selective liquid chromatography?Ctandem mass spectrometry method for the determination of pethidine and atropine in rabbit plasma was developed and validated. The analytes and internal standard (IS) are extracted from plasma by liquid?Cliquid extraction using ethyl acetate, and separated on a Zorbax SB-Aq column (2.1 × 150 mm, 3.5 ??m) using acetonitrile?C0.1% formic acid as mobile phase with gradient elution. Electrospray ionization source was applied and operated in positive ion mode, and multiple reaction monitoring mode was used for quantification using target fragment ions m/z 247.8 ?? 219.7 for pethidine, m/z 289.9 ?? 123.8 for atropine and m/z 295.0 ?? 266.8 for IS, respectively. The assay is linear over the range of 5?C1,000 ng mL?1 for pethidine and atropine, with a lower limit of quantification of 3 ng mL?1 for pethidine and 5 ng mL?1 for atropine. Intra-day and inter-day precision are less than 11% and the accuracy are in the range of 90.4?C106.3%. Furthermore, the newly developed method is successfully used for the determination of pethidine and atropine in rabbit plasma for pharmacokinetic study.  相似文献   

14.
A simple, sensitive, selective, rapid, rugged, reproducible and specific liquid chromatography?Ctandem mass spectrometry (LC?CMS/MS) method was used for quantitative estimation of rizatriptan (RZ) in human plasma using rizatriptan-d 6 (RZD6) as internal standard (IS). Chromatographic separation was performed on Ascentis Express RP Amide C18, 50 × 4.6 mm, 2.7 ??m column with isocratic mobile phase composed of 10 mM ammonium formate:acetonitrile (20:80 v/v) at flow rate of 0.5 mL min?1. RZ and RZD6 were detected with proton adducts at m/z (amu) 270.2 ?? 201.2 and 276.1 ?? 207.1, respectively, in multiple reaction monitoring (MRM) positive mode. Liquid?Cliquid extraction was used and validated over a linear concentration range of 0.1?C100.0 ng mL?1 with correlation coefficient r 2 ?? 0.9981. The limit of quantification (LOQ) and limit of detection (LOD) were found to be 0.1 ng mL?1 and 12.5 fg, respectively. Intra- and inter-day precision were within 1.7?C3.1% and 2.8?C3.7%, and accuracy within 96.0?C101.7% and 99.7?C101.4% for RZ. Drug was found to be stable throughout three freeze?Cthaw cycles. The method was successfully employed for analysis of plasma samples following oral administration of RZ (10 mg) in 25 healthy Indian male human volunteers under fasting conditions.  相似文献   

15.
We report the development and validation of a high-performance liquid-chromatographic–tandem mass spectrometric method for determination of artemether (ARM) and its active metabolite dihydroartemisinin (DHA) in human plasma; artemisinin was used as internal standard (IS). Chromatographic separation was performed on a 150 mm × 4.6 mm i.d., 5 μm particle, C18 column coupled with a 4.0 mm × 3.0 mm i.d., 5 μm particle, C18 guard column. The mobile phase was acetonitrile–0.1% formic acid solution, 80:20 (v/v), at a flow-rate of 1 mL min?1. An atmospheric-pressure chemical-ionization (APCI) interface was used to produce sample ions, and positive ions were quantified by using the MS detector in selected-reaction-monitoring mode, using the reaction m/z 221 to 163 for determination of ARM and DHA and the reaction m/z 283 to 219 for determination of the IS. Plasma samples were prepared by extraction with methyl t-butyl ether, evaporation of the extract to dryness, and reconstitution of the residue with mobile phase. Extraction recovery for ARM and DHA ranged from 74.74 to 99.39%. High specificity and a limit of quantification of 5 ng mL?1 were achieved for ARM and DHA. Linearity was confirmed over the concentration range 5–500 ng mL?1; the correlation coefficients (R) were >0.99. The relative standard deviation for intra-day and inter-day assay of both compounds was <9.60% and inaccuracy was within ±10.81%. Stock solutions were stable at 4 °C for at least 720 h. Processed extracts were stable at room temperature for at least 24 h and QC samples were stable during three freeze–thaw cycles. In spiked human plasma under ambient conditions ARM was stable for at least 8 h whereas DHA was stable for 2 h only.  相似文献   

16.
A sensitive and specific high-performance liquid chromatography–tandem mass spectrometry method has been developed and validated for the determination of clonazepam in rat plasma. Clonazepam and internal standard diazepam were extracted from plasma samples by a single-step protein precipitation. The chromatographic separation was performed on a Dikma ODS-C18 reversed-phase column at 40 °C. The mobile phase composed of a premix of solvent A (0.1% formic acid–4 mM ammonium acetate–water)–solvent B (acetonitrile) (13:87, v/v) at a flow-rate of 0.7 mL min?1. Positive electrospray ionization was utilized as the ionization source. Clonazepam and the internal standard were determined using multiple reaction monitoring of precursor → product ion transitions at m/z 316.0 → 270.0 and m/z 285.1 → 193.2, respectively. The lower limit of quantification was 0.25 ng mL?1 using 50 μL plasma samples and the linear calibration range was from 0.25 to 128 ng mL?1. The within- and between-batch RSDs were lower than 15% and the relative recoveries of clonazepam ranged from 97.4 to 104.7%. The mean extraction recoveries of clonazepam and IS were 79.7 and 77.6%, respectively. The method has been successfully applied to the pharmacokinetic studies in rat after oral administration of clonazepam.  相似文献   

17.
A simple, rapid and sensitive LC–MS/MS method in positive ion mode was developed and validated to determine CKD-501, lobeglitazone, in human plasma and urine using glipizide as an internal standard (IS). Lobeglitazone is a novel thiazolidinedione (TZDs)-based peroxisome proliferator-activated receptor (PPAR) agonist, used for the management of type-2 diabetes. After mixing the IS, dissolved in acetonitrile, with a plasma or urine sample containing lobeglitazone, 10?μL of supernatant was injected into the LC–MS/MS system. Quantification was performed in the multiple reaction monitoring (MRM) mode using transition of 481.5?→?152.2 (m/z) for lobeglitazone and 446.1?→?321.2 (m/z) for the IS. The method showed good linearity over concentration ranges of 0.5–1,000?ng?mL?1 for plasma and 0.2–250?ng?mL?1 for urine (r 2?≥?0.9996). The mean percent extraction recovery of lobeglitazone was 90.8?% for plasma and 87.3?% for urine, while the recoveries of the IS were greater than 86.4?% for both. The intra-day and inter-day precision of plasma ranged from 1.1 to 3.7 and 2.5 to 3.3?% (RSD), respectively, and the intra- and inter-day precision of urine ranged from 1.5 to 2.7 and 3.2 to 3.5?%, respectively. This method is simple, sensitive, and applicable for the pharmacokinetic study of lobeglitazone in human plasma. Most of the urine concentrations of lobeglitazone were below the LLOQ because the lobeglitazone is extensively metabolized.  相似文献   

18.
A simple and rapid reversed-phase LC method was developed and validated for simultaneous determination of three flavonoids, quercetin (QU), kaempferol (KA) and isorhamnetin (IS), in rabbit blood plasma. The plasma was deproteinized using 10% trichloroacetic acid and extracted by n-butanol–acetoacetate solvent prior to LC analysis. The analyte was separated on a reversed-phase column with acetonitrile and 0.1% phosphoric acid in water (27:73, v/v) as mobile phase at a flow-rate of 0.8 mL min?1, and UV detection wavelength at 369 nm. By this developed method, the concentrations of QU, KA and IS were linearly related to their responses in the range of 0.05–2.5 μg mL?1. The precision and accuracy for QU, KA and IS in plasma were within ±15% except for the limit of quantitation (LOQ), where they were within ±20%. The validated method has been successfully applied in the pharmacokinetic study of QU, KA and IS in rabbits after intragastric administration of an ethanol extract from traditional Chinese medicine Pollen Typhae.  相似文献   

19.
A sensitive and selective liquid chromatography tandem mass spectrometry method for quantitative determination of lobeline hydrochloride in rabbit plasma was developed and validated. After addition of triazolam as internal standard, protein precipitation by acetonitrile was used as sample preparation. Chromatographic separation was achieved on a Zorbax SB-C18 column with acetonitrile-0.1% formic acid as mobile phase with gradient elution. Electrospray ionization source was applied and operated in positive ion mode; multiple reaction monitoring mode was used for quantification using target fragment ions m/z 338.1 → 315.8 for lobeline hydrochloride and m/z 342.9 → 308.0 for the IS. Calibration plots were linear over the range of 2–500 ng mL?1 for lobeline hydrochloride in plasma. Lower limit of quantitation for lobeline hydrochloride was 2 ng mL?1. Mean recovery of lobeline hydrochloride from plasma was in the range 97.5–102.3%. RSD of intra-day and inter-day precision were both <9%. This developed method is successfully used in pharmacokinetic study of lobeline hydrochloride in rabbit.  相似文献   

20.
A simple method using a one-step liquid-liquid extraction (LLE) with butyl acetate followed by high-performance liquid chromatography (HPLC) with positive ion electrospray ionization tandem mass spectrometric (ESI-MS/MS) detection was developed for the determination of itopride in human plasma, using sulpiride as an internal standard (IS). Acquisition was performed in multiple reaction monitoring (MRM) mode, by monitoring the transitions: m/z 359.5 > 166.1 for itopride and m/z 342.3 > 111.6 for IS, respectively. Analytes were chromatographed on an YMC C18 reverse-phase chromatographic column by isocratic elution with 1 mM ammonium acetate buffer-methanol (20: 80, v/v; pH 4.0 adjusted with acetic acid). Results were linear (r2 = 0.9999) over the studied range (0.5-1000 ng mL−1) with a total analysis time per run of 2 min for LC-MS/MS. The developed method was validated and successfully applied to bioequivalence studies of itopride hydrochloride in healthy male volunteers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号