首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Xin Ming 《Talanta》2009,79(3):752-761
Although simple acids, replacing buffers, have been widely applied to suppress the ionization of weakly ionizable acidic analytes in reversed-phase liquid chromatography (RPLC), none of the previously reported works focused on the systematic studies about the retention behavior of the acidic solutes in this ion-suppression RPLC mode. The subject of this paper was therefore to investigate the retention behavior of monobasic weak acidic compounds using acetic, perchloric and phosphoric acids as the ion-suppressors. The apparent octanol-water partition coefficient (Kow) was proposed to calibrate the octanol-water partition coefficient (Kow) of these weak acidic compounds, which resulted in a better linear correlation with logkw, the logarithm of the hypothetical retention factor corresponding to neat aqueous fraction of hydroorganic mobile phase. This logKowlogkw linear correlation was successfully validated by the results of monocarboxylic acids and monohydrating phenols, and moreover by the results under diverse experimental conditions for the same solutes. This straightforward relationship not only can be used to effectively predict the retention values of weak acidic solutes combined with Snyder-Soczewinski equation, but also can offer a promising medium for directly measuring Kow data of these compounds via Collander equation. In addition, the influence of the different ion-suppressors on the retention of weak acidic compounds was also compared in this RPLC mode.  相似文献   

3.
This paper describes the results of the evaluation of a new solvation parameter model for reversed-phase ion-pair chromatography by linear gradient elution. This model is described as . The first six terms are the usual solvation parameter equation for neutral solutes, and the seventh term represents the contribution to retention from solute’s ionization. The last term describes the retention increase due to ion-pair effect. Retention times obtained for 60 solutes (neutral, acidic and basic) in acetonitrile/aqueous mobile phases with different ion-pair reagents (phosphoric acid, trifluoroacetic acid, heptafluorobutyric acid, perchloric acid, and hexafluorophosphoric acid) are used to evaluate the capability of the function. It is concluded that the model describes the retention of ionizable/ionized compounds under ion-pair conditions very well. Accordingly, the function extends the application of linear solvation energy relationships (LSERs) to ionizable compounds in ion-pair chromatography, and allows us to easily predict their retention for chromatographic optimization, including selectivity optimization and internal standard selection. Finally, the conclusion can be extended to ioscratic elution.  相似文献   

4.
The retention behavior of neutral, positively charged, and negatively charged solutes on the IAM.PC.DD2 stationary phase was investigated and compared. A set of monofunctional compounds and complex drugs (steroids, nonsteroidal anti‐inflammatory drugs, and β‐blockers) were selected for this study, i.e., neutral solutes and solutes with acidic or basic functionalities which are positively charged or negatively charged at pH 7.0. The correlation between the retention factor log kw at pH 7.0 on the IAM.PC.DD2 stationary phase and the partition coefficient log Poct or the distribution coefficient log D7.0 showed that the retention mechanism depends on the charge state and structural characteristics of the compounds. The neutrals were least retained on the IAM.PC.DD2 stationary phase, and positively charged solutes were more retained than negatively charged ones. This implies that the retention of the charged solutes is controlled not only by lipophilicity but also by the electrostatic interaction with the phospholipid, with which positively charged solutes interact more strongly than negatively charged ones.  相似文献   

5.
This paper describes the results of the evaluation of an alternative solvation parameter model for ionizable compounds. The new model is described as Log(k) = Int + rR2 + spi2(H) + asigmaalpha2(H) + bsigmabeta2(H) + mVx + U/(1 + V10 (+/-(pH-Pk))). The first six terms are the usual solvation parameter equation for neutral solutes, and the last term represents the contribution to retention from the ionization of solutes. Retention data obtained for 30 solutes in acetonitrile/aqueous buffer mobile phases are used to evaluate the capability of the function using different pH/pK scales. Because the function is not linear, nonlinear least-squares analysis is used to perform the data processing. It is concluded that the model function describes similarly the retention of ionizable compounds to the literature model without the need to accurately measure the mobile phase pH and solute's pK. Accordingly, the function simplifies the application of linear solvation energy relationships (LSERs) to ionizable compounds, and allows us to easily predict their retention for chromatographic optimization.  相似文献   

6.
Summary A global LSER model that relates HPLC retention to mobile phase composition and pH is tested for a varied group of solutes, both neutral and ionizable, in a polymeric column and methanol-water mobile phases. It is compared to the local LSER model developed only for a given mobile phase, i.e., a fixed organic modifier content, and to the global LSER model set only for neutral solutes. The global LSER model for neutral and ionizable solutes requires a few supplementary parameters over the other models tested, but it accounts for retention under any experimental conditions for a given column and methanol-water mobile phases, describing properly the interactions established in the HPLC system (hydrophobicity, hydrogen-bond acidity and basicity, dipolarity/polarizability…). This paper is number 13 of a series with the same general title: “Retention of Ionizable Compounds on HPLC” published in various journals.  相似文献   

7.
8.
9.
Simple acids are usually applied to suppress the ionization of weakly ionizable acidic analytes in reversed-phase liquid chromatography. The purpose of this study is to investigate the retention behavior of various weak acidic compounds (monoprotic, diprotic, triprotic, and tetraprotic acids) using acetic or perchloric acid as ion suppressor in a binary hydroorganic mobile phase. The apparent n-octanol–water partition coefficient (K ow ) was proposed to calibrate the n-octanol–water partition coefficient (K ow) of weak acidic compound. LogK ow was found to have a better linear correlation with logk w, the logarithm of the retention factor obtained by extrapolating to neat aqueous fraction of the mobile phase, for all weakly ionizable acidic compounds. This straightforward relationship offers a potential medium for direct measurement of K ow data of weak acidic analytes and can be used to predict retention behavior of these compounds in the ion suppression reversed-phase liquid chromatographic mode.  相似文献   

10.
11.
12.
In this work, a poly-l-lysine-grafted stationary phase was synthesized by polymerization of N-carboxyanhydride of l-lysine initiated by 3-aminopropylated silica. The resulting material was characterized by FT-IR spectra, elemental analysis and thermogravimetric analysis, which clearly indicated that the new phase had been prepared successfully. The retention of polar solutes depending on acetonitrile content in mobile phase exhibited ??U-shaped?? curves, which was an indication of hydrophilic interaction liquid chromatography (HILIC)/reversed-phase liquid chromatography (RPLC) mixed-mode retention behavior. The retention mechanisms in HILIC and RPLC modes also were investigated. Phenol compounds, aniline compounds and hydrophilic compounds were separated in RPLC or HILIC mode on the new stationary phase, respectively. This result shows that the new phase could be used for both RPLC and HILIC applications, providing greater flexibility for real sample analysis.  相似文献   

13.
14.
A novel water-holding adsorbent was synthesized by introducing a zwitter-ionic polymer to a hydrophilic methacrylate base resin. The retention abilities of the hydrophilic compounds on the adsorbents with and without cross-link in the zwitter-ionic functional groups were examined. The amount of held water on the non-cross-linked adsorbent was higher than that of the cross-linked one. The extraction efficiencies of the hydrophilic solutes on the adsorbents were evaluated by the solid phase extraction method. These adsorbents showed high affinity for nucleosides and glycosides, and good recoveries for such hydrophilic compounds in the solid-phase extraction were obtained. Furthermore, the retention properties of the hydrophilic solutes on the adsorbents were also evaluated by LC. The hydrophilic solutes were retained on these adsorbents by a partition mode based on a hydrophilic interaction. The retention factors of the hydrophilic solutes showed good correlation to their log P o/w (logarithm of octanol?Cwater partition coefficient) and good separation based on hydrophilic interaction was obtained for nucleobases and nucleosides.  相似文献   

15.
In the present work, we study the effect of mobile phase anionic additive type and concentration on the selectivity, efficiency, and sample loading capacity of cationic drugs in reversed-phase liquid chromatography (RPLC). The type and concentration of an anionic additive are known to have a strong effect on the absolute retention of cations in RPLC; in contrast they have only a small effect on the selectivity of one cation relative to a second as seen here. This is mainly due to the similarity of the ion pair formation constants between the selected cations. The limiting retention factors of cations (i.e. the retention factor of the fully ion-paired analyte at very high additive concentration) are roughly proportional to their inherent hydrophobicities (i.e. the retention factor of the analyte in the absence of the anionic additive). With a given anion, differences in ion pairing strength between the solutes are required for effective selectivity adjustment. Based on the Wade–Lucy–Carr (W–L–C) kinetic model of overload peaks, the approach we developed in our previous work was used to study the effect of mobile phase anionic additives type and concentration on the limiting plate count (N0) and sample loading capacity (ω0.5) of various cationic drugs. Under linear chromatographic conditions, where the analyte exhibits its smallest peak width and thus maximum apparent plate count, the type and concentration of anionic additives have almost no effect on peak width. In comparison to neutral analytes the sorption isotherms of cationic species are very easily overloaded even when many fewer moles of cations as compared to neutrals are injected. We showed that different anionic additives profoundly affect the cations’ “overload profiles” (i.e. plots of plate count versus amount injected) by changing the sample loading capacities. The increase in sample loading capacities with different anions show the same order as the extent of ion pairing between the anions and the basic analytes. The detrimental effect of sample overloading on peak width can be greatly diminished by using either a stronger ion pairing agent or a higher concentration of a given ion pairing agent. Both effects operate by increasing the sample loading capacity, thereby allowing more solute to be injected. We believe that the increase in sample loading capacity described above is due in part to the increase in the number of ion-exchange sites as more anions sorb to the stationary phase. At the same time, the formation of a neutral ion-paired analyte also increases the amount of cation which can be loaded onto the stationary phase by allowing a greater fraction of the analyte to be present in the stationary phase as an electrically neutral (i.e. ion-paired) species.  相似文献   

16.
Amino-, cyano- and diol-bonded silica stationary phases were characterized by estimating their characteristic interaction constants in reversed-phase liquid chromatography (RPLC) based on linear solvation energy relationships. Five characteristic interaction constants of the stationary phases, the hydrophobicity (v), polarizability (r), dipolarity (s), hydrogen bond (HB) acceptor basicity (a) and HB donor acidity strength (b) were determined by multiple regression analyses of logarithmic retention factors (k) for a set of test solutes measured on them in 10% (v/v) methanol-water vs. the solute properties represented by characteristic molecular volume (Vx), excess polarization (R2), dipolarity/polarizability (pi*), HB donor acidity (alpha) and HB acceptor basicity (beta). Magnitudes of the five constants for the phases in RPLC were compared with those in normal-phase LC to see the differences in chromatographic selectivity in the two LC modes.  相似文献   

17.
Evidence in the literature of systematic investigation of retention mechanisms on strong cation-exchange (SCX) modified silica LC packings is lacking. In this study, the retention behaviour of selected basic drugs using a propylbenzenesulfonic acid-modified packing (Nucleosil 100SA) were compared, under similar conditions, with previous findings from a propylsulfonic acid-modified packing (Waters Spherisorb S5SCX). Eluent ionic strength, apparent pH, and solvent composition were investigated. Good efficiency (70,000 plates m?1) and peak symmetry (<1.5) were observed using the Nucleosil 100SA packing. The use of different alkyl ‘spacer’ moieties in each packing influenced retention, with hydrophobic partitioning of analytes more evident for the Nucleosil packing compared with Spherisorb, particularly when water-containing eluents were used. On Nucleosil 100SA, non ion-exchange interactions accounted for up to 61% of retention. Despite some correlation with analyte LogP on Nucleosil 100SA, and the environment surrounding basic nitrogen moieties, retention on both SCX packings was unrelated to analyte pK a.  相似文献   

18.
The aim of this work was to develop a model that accurately describes retention in liquid chromatography (LC) as a function of pH and solvent composition throughout a large parameter space. The variation of retention as a function of the solvent composition, keeping other factors constants, has been extensively studied. The linear relationship established between retention factors of solutes and the polarity parameter of the mobile phase, E(N)T, has proved to predict accurately retention in LC as a function of the organic solvent content. Moreover, correlation between retention and the mobile phase pH, measured in the hydroorganic mixture, can be established allowing prediction of the chromatographic behavior as a function of the eluent pH. The combination of these relationships could be useful for modelling retention in LC as a function of solvent composition and pH. For that purpose, the retention behavior on an octadecyl silica column of a group of diuretic compounds covering a wide range of physico-chemical properties were studied using acetonitrile as organic modifier. The suggested model accurately describes retention of ionizable solutes as concomitant effects of variables included and is applicable to all solutes studied. We also aimed to establish an experimental design that allows to reproduce to a good approximation the real retention surface from a limited number of experiments, that is from a limited number of chromatograms. Ultimately, our intention is to use the model and experimental design for the simultaneous interpretive optimization of pH and proportion of organic solvent of the mobile phase to be used in the proposed separation.  相似文献   

19.
20.
A strategy to utilize neutral model compounds for lipophilicity measurement of ionizable basic compounds by reversed‐phase high‐performance liquid chromatography is proposed in this paper. The applicability of the novel protocol was justified by theoretical derivation. Meanwhile, the linear relationships between logarithm of apparent n‐octanol/water partition coefficients (logKow′′) and logarithm of retention factors corresponding to the 100% aqueous fraction of mobile phase (logkw) were established for a basic training set, a neutral training set and a mixed training set of these two. As proved in theory, the good linearity and external validation results indicated that the logKow′′–logkw relationships obtained from a neutral model training set were always reliable regardless of mobile phase pH. Afterwards, the above relationships were adopted to determine the logKow of harmaline, a weakly dissociable alkaloid. As far as we know, this is the first report on experimental logKow data for harmaline (logKow = 2.28 ± 0.08). Introducing neutral compounds into a basic model training set or using neutral model compounds alone is recommended to measure the lipophilicity of weakly ionizable basic compounds especially those with high hydrophobicity for the advantages of more suitable model compound choices and convenient mobile phase pH control.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号