首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.
[(Ru(eta(6)-p-cymene)(mu-Cl)Cl)(2)] and [(Ru(eta(3):eta(3)-C(10)H(16))(mu-Cl)Cl)(2)] react with Ph(2)PCH(2)P[=NP(=O)(OR)(2)]Ph(2) (R = Et (1a), Ph (1b)) affording complexes [Ru(eta(6)-p-cymene)Cl(2)(kappa(1)-P-Ph(2)PCH(2)P[=NP(=O)(OR)(2)]Ph(2))] (R = Et (2a), Ph (2b)) and [Ru(eta(3):eta(3)-C(10)H(16))Cl(2)(kappa(1)-P-Ph(2)PCH(2)P[=NP(=O)(OR)(2)]Ph(2))] (R = Et (6a), Ph (6b)). While treatment of 2a with 1 equiv of AgSbF(6) yields a mixture of [Ru(eta(6)-p-cymene)Cl(kappa(2)-P,O-Ph(2)PCH(2)P[=NP(=O)(OEt)(2)]Ph(2))][SbF(6)] (3a) and [Ru(eta(6)-p-cymene)Cl(kappa(2)-P,N-Ph(2)PCH(2)P[=NP(=O)(OEt)(2)]Ph(2))][SbF(6)] (4a), [Ru(eta(6)-p-cymene)Cl(kappa(2)-P,O-Ph(2)PCH(2)P[=NP(=O)(OPh)(2)]Ph(2))][SbF(6)] (3b) and [Ru(eta(3):eta(3)-C(10)H(16))Cl(kappa(2)-P,O-Ph(2)PCH(2)P[=NP(=O)(OR)(2)]Ph(2))][SbF(6)] (R = Et (7a), Ph (7b)) are selectively formed from 2b and 6a,b. Complexes [Ru(eta(6)-p-cymene)(kappa(3)-P,N,O-Ph(2)PCH(2)P[=NP(=O)(OR)(2)]Ph(2))][SbF(6)](2) (R = Et (5a), Ph (5b)) and [Ru(eta(3):eta(3)-C(10)H(16))(kappa(3)-P,N,O-Ph(2)PCH(2)P[=NP(=O)(OR)(2)]Ph(2))][SbF(6)](2) (R = Et (8a), Ph (8b)) have been prepared using 2 equiv of AgSbF(6). The reactivity of 3-5a,b has been explored allowing the synthesis of [Ru(eta(6)-p-cymene)X(2)(kappa(1)-P-Ph(2)PCH(2)P[=NP(=O)(OR)(2)]Ph(2))] (R = Et, Ph; X = Br, I, N(3), NCO (9-12a,b)). The catalytic activity of 2-8a,b in transfer hydrogenation of cyclohexanone, as well as theoretical calculations on the models [Ru(eta(6)-C(6)H(6))Cl(kappa(2)-P,N-H(2)PCH(2)P[=NP(=O)(OH)(2)]H(2))]+ and [Ru(eta(6)-C(6)H(6))Cl(kappa(2)-P,O-H(2)PCH(2)P[=NP(=O)(OH)(2)]H(2))]+, has been also studied.  相似文献   

2.
Reactions of [(eta5-C5H5)Ru(PR'3)2(Cl)] with NaBAr(F) [BAr(F)-=B{3,5-[C6H3(CF3)2]}4-; PR'3=PEt3 or 1/2Et2PCH2CH2PEt2) (depe)] and PR2H (R=Ph, a; tBu, b; Cy, c) in C6H5F, or of related cationic Ru(N2) complexes with PR2H in C6H5F, gave the secondary phosphine complexes [(eta5-C5H5)Ru(PR'3)2(PR2H)]+ BAr(F)- (PR'3=PEt3, 3 a-c; 1/2depe, 4 a,b) in 65-91 % yields. Additions of tBuOK (3 a, 4 a; [D6]acetone) or NaN(SiMe3)2 (3 b,c, 4 b; [D8]THF) gave the title complexes [(eta5-C5H5)Ru(PEt3)2(PR2)] (5 a-c) and [(eta5-C5H5)Ru(depe)(PR2)] (6 a,b) in high spectroscopic yields. These complexes were rapidly oxidized in air; with 5 a, [(eta5-C5H5)Ru(PEt3)2{P(=O)Ph2}] was isolated (>99 %). The reaction of 5 a and elemental selenium yielded [(eta5-C5H5)Ru(PEt3)2{P(=Se)Ph2}] (70 %); selenides from 5 c and 6 a were characterized in situ. Competitive deprotonation reactions showed that 5 a is more basic than the rhenium analog [(eta5-C5H5)Re(NO)(PPh3)(PPh2)], and that 6 b is more basic than PtBu3 and P(iPrNCH2CH2)3N. The latter is one of the most basic trivalent phosphorus compounds [pK(a)(acetonitrile) 33.6]. Complexes 5 a-c and 6 b are effective ligands for Pd(OAc)2-catalyzed Suzuki coupling reactions: 6 b gave a catalyst nearly as active as the benchmark organophosphine PtBu3; 5 a, with a less bulky and electron-rich PR2 moiety, gave a less active catalyst. The reaction of 5 a and [(eta3-C3H5)Pd(NCPh)2]+ BF4- gave the bridging phosphido complex [(eta5-C5H5)Ru(PEt3)2(PPh2)Pd(NCPh)(eta3-C3H5)]+ BAr(F)- in approximately 90 % purity. The crystal structure of 4 a is described, as well as substitution reactions of 3 b and 4 b.  相似文献   

3.
Secondary phosphine complexes of the formula [(eta(5)-C(5)H(5))Ru(L)(2)(PHR(2))](+) BAr(F)(-) are prepared from cationic ruthenium N(2) complexes and PHR(2) (R = Ph (a), t-Bu (b), Cy (c)). Additions of t-BuOK or NaN(SiMe(3))(2) give the phosphido complexes (eta(5)-C(5)H(5))Ru(L)(2)(PR(2)) ((L)(2) = (PEt(3))(2) (5a-c), depe (6a,b)) in high NMR yields. These rapidly oxidize in air to give isolable RuP(=O)R(2) species. Complex 5a is more basic than the rhenium analogue (eta(5)-C(5)H(5))Re(NO)(PPh(3))(PPh(2)), and 6b is more basic than P-t-Bu(3). Complexes 5a-c and 6b are effective ligands for palladium-catalyzed Suzuki reactions. The catalyst from 6b is nearly as reactive as that from the benchmark ligand P-t-Bu(3).  相似文献   

4.
Paramagnetic (hyperfine) NMR shifts in the (13)C cyanide bridge and (31)P resonances in a set of mixed valence complexes [(eta(5)-C(5)R(5))Ru(PPh(3))L((13)CN)Ru(NH(3))(5)](n+) (R = H; L = PPh(3), CO, NO(+); R = Me; L = PPh(3)) are sensitive to the extent of intermetallic charge-transfer, and are strongly solvent dependent.  相似文献   

5.
The reaction of [(eta(6)-arene)RuCl(2)](2) (arene = C(6)Me(6), 1,4-MeC(6)H(4)CHMe(2)) with a large excess of the dianion of bis(2-mercaptoethyl) sulfide, (HSCH(2)CH(2))(2)S, obtained from deprotonation of the dithiol with freshly prepared NaOMe, gives the deep red, monomeric complexes [(eta(6)-arene)Ru(eta(3)-C(4)H(8)S(3))] (arene = C(6)Me(6) (5), 1,4-MeC(6)H(4)CHMe(2) (6)) in which the dianion is bound to the metal atom through one thioether and two thiolate sulfur atoms. Complex 5 reacts with [(eta(6)-C(6)Me(6))RuCl(2)](2) (4) in a 2:1 mole ratio to give a quantitative yield of the chloride salt of a binuclear cation [((eta(6)-C(6)Me(6))Ru)(2)Cl(mu(2)-eta(2):eta(3)-C(4)H(8)S(3))](+) (7) in which the thiolate sulfur atoms of the [(eta(6)-C(6)Me(6))Ru(eta(3)-C(4)H(8)S(3))] group bridge to a (eta(6)-C(6)Me(6))RuCl unit. This compound is also obtained directly from the reaction of 4 with the dithiolate, if the Ru dimer is used in large excess. The binuclear complex [((eta(6)-C(6)Me(6))Ru)(2)(MeCN)(mu(2)-eta(2):eta(3)-C(4)H(8)S(3))](PF(6))(2).MeCN, (9)(PF(6))(2).MeCN, is obtained by treatment of (7)Cl with NH(4)PF(6) in acetonitrile. Protonation of 5 with HCl gave the mono- and diprotonated derivatives viz. [(eta(6)-C(6)Me(6))Ru(eta(3)-C(4)H(9)S(3))]Cl, (8)Cl, and [(eta(6)-C(6)Me(6))Ru(eta(3)-C(4)H(10)S(3))]Cl(2), (10)Cl(2), respectively. The reaction of 5 with methyl iodide gives both the mono- and di-S-methylated derivatives. Treatment of 5 with dibromoalkanes, Br(CH(2))(n)Br (n = 1-5), effects ring closure to give the (eta(6)-C(6)Me(6))Ru dications containing the trithia mesocyclic zS3 (z = 8-12) ligands, isolated as their PF(6) salts. The X-ray crystal structures of 5, 6, the solvates of (7)Cl and (9)(PF(6))(2), and the trithia mesocyclic Ru complexes (eta(6)-C(6)Me(6))Ru(zS3)(PF(6))(2) (z = 8-11) are reported.  相似文献   

6.
The treatment of [Ru(L(OEt))(N)Cl(2)] (1; L(OEt)(-) = [Co(η(5)-C(5)H(5)){P(O)(OEt)(2)}(3)](-)) with Et(3)SiH affords [Ru(L(OEt))Cl(2)(NH(3))] (2), whereas that with [Ru(L(OEt))(H)(CO)(PPh(3))] (3) gives the dinuclear imido complex [(L(OEt))Cl(2)Ru(μ-NH)Ru(CO)(PPh(3))(L(OEt))] (4). The imido group in 4 binds to the two ruthenium atoms unsymmetrically with Ru-N distances of 1.818(6) and 1.952(6) ?. The reaction between 1 and 3 at 25 °C in a toluene solution is first order in both complexes with a second-order rate constant determined to be (7.2 ± 0.4) × 10(-5) M(-1) s(-1).  相似文献   

7.
Reaction of the amido complex (eta(5)-C(5)H(5))Re(NO)(PPh(3))(&Numl;H(2)) (2) and hexafluoroacetone gives the methyleneamido complex (eta(5)-C(5)H(5))Re(NO)(PPh(3))(&Numl;=C(CF(3))(2)) (3, 58%). Addition of TfOH to 3 yields the sigma-imine complex [(eta(5)-C(5)H(5))Re(NO)(PPh(3))(eta(1)-N(H)=C(CF(3))(2))](+)TfO(-) (4, 96%). Similar reactions of 2 with trifluoroacetaldehyde and then TfOH give the sigma-imine complex [(eta(5)-C(5)H(5))Re(NO)(PPh(3))(eta(1)-N(H)=C(CF(3))H)](+)TfO(-) (5, 78%) and sometimes small amounts of the corresponding pi-trifluoroacetaldehyde complex. Reaction of 5 and t-BuO(-)K(+) gives the methyleneamido complex (eta(5)-C(5)H(5))Re(NO)(PPh(3))(&Numl;=C(CF(3))H) (6, 82%). The IR and NMR properties of 3-6 are studied in detail. The (13)C NMR spectra show C=N signals (157-142 ppm) diagnostic of sigma-binding modes. No evidence is observed for pi isomers of 4 or 5. Analogous O=C(CF(3))X complexes give exclusively pi isomers, and rationales are discussed. Reactions of 3or 6 with MeOTf and heteroatom electrophiles are also described.  相似文献   

8.
The reactions of elemental indium and In(I)Br with the carbonyl-free organonickel complexes (eta(5)-C(5)H(5))(PR(3))Ni-Br (R = CH(3), C(6)H(5)) have been studied in some detail. Either redox reactions to yield the ionic products [(eta(5)-C(5)H(5))(PR(3))(2)Ni][InBr(4)] (2a,b) occurred or the Ni-In bound systems (eta(5)-C(5)H(5))(PPh(3))Ni-InBr(2)(OPPh(3)) (3a) and [(eta(5)-C(5)H(5))(PPh(3))Ni](2)InBr (4) were obtained in good yields. The new compounds were characterized by elemental analysis, NMR, and mass spectrometry. A short Ni-In bond of 244.65(9) pm was found for 3a. Single crystal data for (eta(5)-C(5)H(5))(PPh(3))Ni-InBr(2)(OPPh(3)).THF (3a): triclinic, P1 with a = 1124.9(3), b = 1353.2(4), c = 1476.4(4) pm, alpha = 94.74(2) degrees, beta = 101.78(2) degrees, gamma = 109.64(1) degrees, V = 2044(1) x 10(6) pm(3), Z = 2, R = 0.053 (R(w) = 0.063).  相似文献   

9.
The molybdenum(II) and tungsten(II) complexes [MCp(2)L] (Cp = eta(5)-cyclopentadienyl; L = C(2)H(4), CO) react with perfluoroalkyl iodides to give a variety of products. The Mo(II) complex [MoCp(2)(C(2)H(4))] reacts with perfluoro-n-butyl iodide or perfluorobenzyl iodide with loss of ethylene to give the first examples of fluoroalkyl complexes of Mo(IV), MoCp(2)(CF(2)CF(2)CF(2)CF(3))I (8) and MoCp(2)(CF(2)C(6)F(5))I (9), one of which (8) has been crystallographically characterized. In contrast, the CO analogue [MoCp(2)(CO)] reacts with perfluorobenzyl iodide without loss of CO to give the crystallographically characterized salt, [MoCp(2)(CF(2)C(6)F(5))(CO)](+)I(-) (10), and the W(II) ethylene precursor [WCp(2)(C(2)H(4))] reacts with perfluorobenzyl iodide without loss of ethylene to afford the salt [WCp(2)(CF(2)C(6)F(5))(C(2)H(4))](+)I(-) (11). These observations demonstrate that the metal-carbon bond is formed first. In further contrast the tungsten precursor [WCp(2)(C(2)H(4))] reacts with perfluoro-n-butyl iodide, perfluoro-iso-propyl iodide, and pentafluorophenyl iodide to give fluoroalkyl- and fluorophenyl-substituted cyclopentadienyl complexes WCp(eta(5)-C(5)H(4)R(F))(H)I (12, R(F) = CF(2)CF(2)CF(2)CF(3); 15, R(F) = CF(CF(3))(2); 16, R(F) = C(6)F(5)); the Mo analogue MoCp(eta(5)-C(5)H(4)R(F))(H)I (14, R(F) = CF(CF(3))(2)) is obtained in similar fashion. The tungsten(IV) hydrido compounds react with iodoform to afford the corresponding diiodides WCp(eta(5)-C(5)H(4)R(F))I(2) (13, R(F) = CF(2)CF(2)CF(2)CF(3); 18, R(F) = CF(CF(3))(2); 19, R(F) = C(6)F(5)), two of which (13 and 19) have been crystallographically characterized. The carbonyl precursors [MCp(2)(CO)] each react with perfluoro-iso-propyl iodide without loss of CO, to afford the exo-fluoroalkylated cyclopentadiene M(II) complexes MCp(eta(4)-C(5)H(5)R(F))(CO)I (21, M = Mo; 22, M = W); the exo-stereochemistry for the fluoroalkyl group is confirmed by an X-ray structural study of 22. The ethylene analogues [MCp(2)(C(2)H(4))] react with perfluoro-tert-butyl iodide to yield the products MCp(2)[(CH(2)CH(2)C(CF(3))(3)]I (25, M = Mo; 26, M = W) resulting from fluoroalkylation at the ethylene ligand. Attempts to provide positive evidence for fluoroalkyl radicals as intermediates in reactions of primary and benzylic substrates were unsuccessful, but trapping experiments with CH(3)OD (to give R(F)D, not R(F)H) indicate that fluoroalkyl anions are the intermediates responsible for ring and ethylene fluoroalkylation in the reactions of secondary and tertiary fluoroalkyl substrates.  相似文献   

10.
Treatment of the complexes [(C(5)H(4)PR(2))(2)Zr(CH(3))(2)](b: R = isopropyl; c: R = cyclohexyl) with the reagent HIr(CO)(PPh(3))(3) (2b) yield the heterobimetallic complexes [mu-C(5)H(4)PR(2))(2)(H(3)C-Zr-Ir(CO)(PPh(3)))] (4b, 4c) with evolution of methane. The reaction of the -PPh(2) substituted analogue with initially yields an intermediate [(H(3)C)(2)Zr(mu-C(5)H(4)PPh(2))(2)Ir(H)(CO)(PPh(3))] 5a, that still contains both methyl groups at zirconium and does not contain a metal-metal bond. At room temperature, the intermediate reacts further with methane formation to eventually yield the (Zr-Ir) complex 4a. The corresponding [mu-C(5)H(4)PR(2))(2)(H(3)C-Zr-Rh(CO)(PPh(3)))] complexes 3a (R = Ph) and 3b (R = isopropyl) react cleanly with isopropyl alcohol to liberate methane and yield the corresponding [mu-C(5)H(4)PR(2))(2)(Me(2)CHO-Zr-Rh(CO)(PPh(3)))] products (7a, 7b). Carefully monitoring the reaction of with Me(2)CHOH by NMR revealed that the Zr-Rh functionality is attacked first to give the intermediate [Me(Me(2)CHO)Zr([micro sign]-C(5)H(4)PR(2))(2)Rh(H)(CO)(PPh(3))] (6b). This intermediate then reacts further to cleave off methane and re-form the (Zr-Rh) metal-metal bond to yield the product 7b. The tetrametallic mu-oxo-(Zr-Rh) metallocene derivate 11a was obtained starting from the (Zr-Rh) complex 3a and it was characterized by X-ray diffraction. It may be that this reaction is also initiated by H-OH addition to the [Zr-Rh] metal-metal bond.  相似文献   

11.
Intramolecular [2 + 2] cycloaddition of two C=C bonds in vinylidene complexes [Ru(eta5-C9H7){=C=C(R)H}(PPh3){kappa1-(P)-PPh2(C3H5)][BF4] affords cyclobutylidene complexes [Ru(eta5-C9H7){kappa2-(P,C)-(=CC(R)HCH2CHCH2PPh2)}(PPh3)][BF4], which can be also obtained by reaction of terminal alkynes with [Ru(eta5-C9H7)(PPh3){kappa3-(P,C,C)-PPh2(C3H5)}][PF6]. The reaction proceeds under mild conditions via vinylidene complexes, and the activation parameters were determined by kinetic studies.  相似文献   

12.
Reactions of a dirhenium tetra(sulfido) complex [PPh(4)](2)[ReS(L)(mu-S)(2)ReS(L)] (L = S(2)C(2)(SiMe(3))(2)) with a series of group 8-11 metal complexes in MeCN at room temperature afforded either the cubane-type clusters [M(2)(ReL)(2)(mu(3)-S)(4)] (M = CpRu (2), PtMe(3), Cu(PPh(3)) (4); Cp = eta(5)-C(5)Me(5)) or the incomplete cubane-type clusters [M(ReL)(2)(mu(3)-S)(mu(2)-S)(3)] (M = (eta(6)-C(6)HMe(5))Ru (5), CpRh (6), CpIr (7)), depending on the nature of the metal complexes added. It has also been disclosed that the latter incomplete cubane-type clusters can serve as the good precursors to the trimetallic cubane-type clusters still poorly precedented. Thus, treatment of 5-7 with a range of metal complexes in THF at room temperature resulted in the formation of novel trimetallic cubane-type clusters, including the neutral clusters [[(eta(6)-C(6)HMe(5))Ru][W(CO)(3)](ReL)(2)(mu(3)-S)(4)], [(CpM)[W(CO)(3)](ReL)(2)(mu(3)-S)(4)] (M = Rh, Ir), [(Cp*Ir)[Mo(CO)(3)](ReL)(2)(mu(3)-S)(4)], [[(eta(6)-C(6)HMe(5))Ru][Pd(PPh(3))](ReL)(2)(mu(3)-S)(4)], and [(Cp*Ir)[Pd(PPh(3))](ReL)(2)(mu(3)-S)(4)] (13) along with the cationic clusters [(Cp*Ir)(CpRu)(ReL)(2)(mu(3)-S)(4)][PF(6)] (14) and [(Cp*Ir)[Rh(cod)](ReL)(2)(mu(3)-S)(4)][PF(6)] (cod = 1,5-cyclooctadiene). The X-ray analyses have been carried out for 2, 4, 7, 13, and the SbF(6) analogue of 14 (14') to confirm their bimetallic cubane-type, bimetallic incomplete cubane-type, or trimetallic cubane-type structures. Fluxional behavior of the incomplete cubane-type and trimetallic cubane-type clusters in solutions has been demonstrated by the variable-temperature (1)H NMR studies, which is ascribable to both the metal-metal bond migration in the cluster cores and the pseudorotation of the dithiolene ligand bonded to the square pyramidal Re centers, where the temperatures at which these processes proceed have been found to depend upon the nature of the metal centers included in the cluster cores.  相似文献   

13.
The syntheses of the chloro complexes [Ru(eta5-C5R5)Cl(L)] (R = H, Me; L = phosphinoamine ligand) (1a-d) have been carried out by reaction of [(eta5-C5H5)RuCl(PPh3)2] or {(eta5-C5Me5)RuCl}4 with the corresponding phosphinoamine (R,R)-1,2-bis((diisopropylphosphino)amino)cyclohexane), R,R-dippach, or 1,2-bis(((diisopropylphosphino)amino)ethane), dippae. The chloride abstraction reactions from these compounds lead to different products depending on the starting chlorocomplex and the reaction conditions. Under argon atmosphere, chloride abstraction from [(eta5-C5Me5)RuCl(R,R-dippach)] with NaBAr'4 yields the compound [(eta5-C5Me5)Ru(kappa3P,P'-(R,R)-dippach)][BAr'4] (2b) which exhibits a three-membered ring Ru-N-P by a new coordination form of this phosphinoamine. However, under the same conditions the reaction starting from [(eta5-C5Me5)RuCl(dippae)] yields the unsaturated 16 electron complex [(eta5-C5Me5)Ru(dippae)][BAr'4] (2d). The bonding modes of R,R-dippach and dippae ligands have been analyzed by DFT calculations. The possibility of tridentate P,N,P-coordination of the phosphinoamide ligand to a fragment [(eta5-C5Me5)Ru]+ is always present, but only the presence of a cyclohexane unit in the ligand framework converts this bonding mode in a more favorable option than the usual P,P-coordination. Dinitrogen [(eta5-C5R5)Ru(N2)(L)][BAr'4] (3a-d) and dioxygen complexes [(eta5-C5H5)Ru(O2)(R,R-dippach)][BPh4] (4a) and [(eta5-C5Me5)Ru(O2)(L)][BPh4] (4b,d) have been prepared by chloride abstraction under dinitrogen or dioxygen atmosphere, respectively. The presence of 16 electron [(eta5-C5H5)Ru(R,R-dippach)]+ species in fluorobenzene solutions of the corresponding dinitrogen or dioxygen complexes in conjunction with the presence of [BAr'4]- gave in some cases a small fraction of [Ru(eta5-C5H5)(eta6-C6H5F)][BAr'4] (5a), which has been isolated and characterized by X-ray diffraction.  相似文献   

14.
Unprecedented diamagnetic, four-coordinate, formally 14-electron (Cy-PSiP)RuX (Cy-PSiP = [κ(3)-(2-R(2)PC(6)H(4))(2)SiMe](-); X = amido, alkoxo) complexes that do not require agostic stabilization and that adopt a highly unusual trigonal pyramidal coordination geometry are reported. The tertiary silane [(2-Cy(2)PC(6)H(4))(2)SiMe]H ((Cy-PSiP)H) reacted with 0.5 [(p-cymene)RuCl(2)](2) in the presence of Et(3)N and PCy(3) to afford [(Cy-PSiP)RuCl](2) (1) in 74% yield. Treatment of 1 with KO(t)Bu led to the formation of (Cy-PSiP)RuO(t)Bu (2, 97% yield), which was crystallographically characterized and shown to adopt a trigonal pyramidal coordination geometry in the solid state. Treatment of 1 with NaN(SiMe(3))(2) led to the formation of (Cy-PSiP)RuN(SiMe(3))(2) (3, 70% yield), which was also found to adopt a trigonal pyramidal coordination geometry in the solid state. The related anilido complexes (Cy-PSiP)RuNH(2,6-R(2)C(6)H(3)) (4, R = H; 5, R = Me) were also prepared in >90% yields by treating 1 with LiNH(2,6-R(2)C(6)H(3)) (R = H, Me) reagents. The solid state structure of 5 indicates a monomeric trigonal pyramidal complex that features a C-H agostic interaction. Complexes 2 and 3 were found to react readily with 1 equiv of H(2)O to form the dimeric hydroxo-bridged complex [(Cy-PSiP)RuOH](2) (6, 94% yield), which was crystallographically characterized. Complexes 2 and 3 also reacted with 1 equiv of PhOH to form the new 18-electron η(5)-oxocyclohexadienyl complex (Cy-PSiP)Ru(η(5)-C(6)H(5)O) (7, 84% yield). Both amido and alkoxo (Cy-PSiP)RuX complexes reacted with H(3)B·NHRR' reagents to form bis(σ-B-H) complexes of the type (Cy-PSiP)RuH(η(2):η(2)-H(2)BNRR') (8, R = R' = H; 9, R = R' = Me; 10, R = H, R' = (t)Bu), which illustrates that such four-coordinate (Cy-PSiP)RuX (X = amido, alkoxo) complexes are able to undergo multiple E-H (E = main group element) bond activation steps. Computational methods were used to investigate structurally related PCP, PPP, PNP, and PSiP four-coordinate Ru complexes and confirmed the key role of the strongly σ-donating silyl group of the PSiP ligand set in enforcing the unusual trigonal pyramidal coordination geometry featured in complexes 2-5, thus substantiating a new strategy for the synthesis of low-coordinate Ru species. The mechanism of the activation of ammonia-borane by such low-coordinate (R-PSiP)RuX (X = amido, alkoxo) species was also studied computationally and was determined to proceed most likely in a stepwise fashion via intramolecular deprotonation of ammonia and subsequent borane B-H bond oxidative addition steps.  相似文献   

15.
Reaction of the diborane(4) B(2)(NMe(2))(2)I(2) with two equivalents of K[(eta(5)-C(5)H(5))M(CO)(3)] (M=Cr, Mo, W) yielded the dinuclear boryloxycarbyne complexes [[(eta(5)-C(5)H(5))(OC)(2)M(triple bond)CO](2)B(2)(NMe(2))(2)] (4 a, M=Mo; b, M=W; c, M=Cr), which were fully characterised in solution by multinuclear NMR methods. The Mo and W complexes 4 a, b proved to be kinetically favoured products of this reaction and underwent quantitative rearrangement in solution to afford the complexes [[(eta(5)-C(5)H(5))(OC)(2)M(triple bond)CO]B(NMe(2))B(NMe(2))[M(CO)(3)(eta(5)-C(5)H(5))]] (5 a, M=Mo; b, M=W); 5 a was characterised by X-ray crystallography in the solid state. Corresponding reactions of B(2)(NMe(2))(2)I(2) with only one equivalent of K[(eta(5)-C(5)H(5))M(CO)(3)] (M=Mo, W) initially afforded 1:1 mixtures of the boryloxycarbyne complexes 4 a, b and unconsumed B(2)(NMe(2))(2)I(2). This mixture, however, yielded finally the diborane(4)yl complexes [(eta(5)-C(5)H(5))(OC)(3)M[B(NMe(2))B(NMe(2))I]] (6 a, M=Mo; b, M=W) by [(eta(5)-C(5)H(5))(OC)(3)M] transfer and rearrangement. Density functional calculations were carried out for 4 c and 5 a, b.  相似文献   

16.
Low temperature in situ UV irradiation of [(eta(5)-C(5)H(5))Co(C(2)H(4))(2)] in the presence of silanes enables the characterisation of unstable fluxional Co(III) silyl hydride complexes [(eta(5)-C(5)H(5))Co(SiR(3))(H)(C(2)H(4))] (SiR(3) = SiEt(3), SiMe(3) or SiHEt(2)) by NMR spectroscopy; the reaction of [Co(eta(5)-C(5)H(5))(C(2)H(4))(2)] with HSiR(3) proceeds thermally to reach an equilibrium when SiR(3) = Si(OMe)(3) or SiClMePh.  相似文献   

17.
Neutral and cationic mononuclear complexes containing both group 15 and polypyridyl ligands [Ru(kappa3-tptz)(PPh3)Cl2] [1; tptz=2,4,6-tris(2-pyridyl)-1,3,5-triazine], [Ru(kappa3-tptz)(kappa2-dppm)Cl]BF4 [2; dppm=bis(diphenylphosphino)methane], [Ru(kappa3-tptz)(PPh3)(pa)]Cl (3; pa=phenylalanine), [Ru(kappa3-tptz)(PPh3)(dtc)]Cl (4; dtc=diethyldithiocarbamate), [Ru(kappa3-tptz)(PPh3)(SCN)2] (5) and [Ru(kappa3-tptz)(PPh3)(N3)2] (6) have been synthesized. Complex 1 has been used as a metalloligand in the synthesis of homo- and heterodinuclear complexes [Cl2(PPh3)Ru(micro-tptz)Ru(eta6-C6H6)Cl]BF4 (7), [Cl2(PPh3)Ru(mu-tptz)Ru(eta6-C10H14)Cl]PF6 (8), and [Cl2(PPh3)Ru(micro-tptz)Rh(eta5-C5Me5)Cl]BF4 (9). Complexes 7-9 present examples of homo- and heterodinuclear complexes in which a typical organometallic moiety [(eta6-C6H6)RuCl]+, [(eta6-C10H14)RuCl]+, or [(eta5-C5Me5)RhCl]+ is bonded to a ruthenium(II) polypyridine moiety. The complexes have been fully characterized by elemental analyses, fast-atom-bombardment mass spectroscopy, NMR (1H and 31P), and electronic spectral studies. Molecular structures of 1-3, 8, and 9 have been determined by single-crystal X-ray diffraction analyses. Complex 1 functions as a good precursor in the synthesis of other ruthenium(II) complexes and as a metalloligand. All of the complexes under study exhibit inhibitory effects on the Topoisomerase II-DNA activity of filarial parasite Setaria cervi and beta-hematin/hemozoin formation in the presence of Plasmodium yoelii lysate.  相似文献   

18.
The complexes TpRu[P(OCH(2))(2)(OCCH(3)](PPh(3))Cl (2) [Tp = hydridotris(pyrazolyl)borate; P(OCH(2))(2)(OCCH(3)) (1) = (4-methyl-2,6,7-trioxa-1-phosphabicyclo[2,2,1]heptane] and TpRu(L)(PPh(3))Cl [L = P(OCH(2))(3)CEt (3), PMe(3) (4) or P(OMe)(3) (5)], (η(6)-C(6)H(6))Ru(L)Cl(2) [L = PPh(3) (6), P(OMe)(3) (7), PMe(3) (8), P(OCH(2))(3)CEt (9), CO (10) or P(OCH(2))(2)(OCCH(3)) (11)] and (η(6)-p-cymene)Ru(L)Cl(2) [L = P(OCH(2))(3)CEt (12), P(OCH(2))(2)(OCCH(3))P(OCH(2))(2)(OCCH(3)) (13), P(OMe)(3) (14) or PPh(3) (15)] have been synthesized, isolated, and characterized by NMR spectroscopy, cyclic voltammetry, mass spectrometry, and, for some complexes, single crystal X-ray diffraction. Data from cyclic voltammetry and solid-state structures have been used to compare the properties of (1) with other phosphorus-based ligands as well as carbon monoxide. Data from the solid-state structures of Ru(II) complexes show that P(OCH(2))(2)(OCCH(3)) has a cone angle of 104°. Cyclic voltammetry data reveal that the Ru(II) complexes bearing P(OCH(2))(2)(OCCH(3)) have more positive Ru(III/II) redox potentials than analogous complexes with the other phosphorus ligands; however, the Ru(III/II) potential for (η(6)-C(6)H(6))Ru[P(OCH(2))(2)(OCCH(3))]Cl(2) is more negative compared to the Ru(III/II) potential for the CO complex (η(6)-C(6)H(6))Ru(CO)Cl(2). For the Ru(II) complexes studied herein, these data are consistent with the overall donor ability of 1 being less than other common phosphines (e.g., PMe(3) or PPh(3)) or phosphites [e.g., P(OCH(2))(3)CEt or P(OMe)(3)] but greater than carbon monoxide.  相似文献   

19.
A theoretical analysis allows for the rationalization of the recently reported unusual formation under mild conditions of a cyclobutylidene ring from a diastereoselective [2 + 2] intramolecular cycloaddition of two C=C systems. The reaction takes place by heating in dichloromethane the vinylidene complexes [Ru((eta(5),eta(3)-C(9)H(7))[=C=C(R)H][kappa(1)-(P)-PPh(2)(C(3)H(5))](PPh(3))][BF(4)] (R = Ph, p-Me-C(6)H(4)) (1) yielding the bicyclic alkylidene complexes [Ru((eta(5),eta(3)-C(9)H(7))[kappa(2)-(P,C)-(=CC(R)HCH(2)CHCH(2)-PPh(2)](PPh(3))][BF(4)] (2). The proposed mechanism represents an alternative to the classical Woodward-Hoffmann's supra-antara approach.  相似文献   

20.
Reaction of 2-(arylazo)phenols with [Ru(PPh(3))(2)(CO)(2)Cl(2)] affords a family of organometallic complexes of ruthenium(II) of type [Ru(PPh(3))(2)(CO)(CNO-R)], where the 2-(arylazo)phenolate ligand (CNO-R; R = OCH(3), CH(3), H, Cl, and NO(2)) is coordinated to the metal center as tridentate C,N,O-donor. Another group of intermediate complexes of type [Ru(PPh(3))(2)(CO)(NO-R)(H)] has also been isolated, where the 2-(arylazo)phenolate ligand (NO-R) is coordinated to the metal center as bidentate N,O-donor. Structures of the [Ru(PPh(3))(2)(CO)(NO-OCH(3))(H)] and [Ru(PPh(3))(2)(CO)(CNO-OCH(3))] complexes have been determined by X-ray crystallography. All the complexes are diamagnetic and show characteristic (1)H NMR signals and intense MLCT transitions in the visible region. Both the [Ru(PPh(3))(2)(CO)(NO-R)(H)] and [Ru(PPh(3))(2)(CO)(CNO-R)] complexes show two oxidative responses on the positive side of SCE.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号