首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 609 毫秒
1.
An extracellular alkaline protease from an alkalophilic bacterium, Bacillus cereus, was produced in a large amount by the method of extractive fermentation. The protease is thermostable, pH tolerant, and compatible with commercial laundry detergerts. The protease purified and characterized in this study was found to be saperior to endogenous protease already present in commercial laundry detergents. The enzyme was purified to homogeneity by ammonium sulfate precipitation, concentration by ultrafiltration, anionexchange chromatography, and gel filtration. The purified enzyme had a specific activity of 3256.05 U/mg and was found to be amonomeric protein with a molecular mass of 28 and 31 kDa, as estimated by sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) and nondenaturing PAGE, respectively. Its maximum protease activity against casein was found to be at pH 10.5 and 50°C. Proteolytic activity of the enzyme was detected by casein and gelatin zymography, which gave a very clear protease activity zone on gel that corresponded to the band obtained on SDS-PAGE and nondenaturing PAGE with a molecular mass of nearly 31 kDa. The purified enzyme was analyzed through matrix-assisted laser desorption ionization-time-of-flight-mass spectrometry (MALDI-TOF-MS) and identified as a subtilisin class of protease. Specific serine protease inhibitors, suggesting the presence of serine residues at the active site, inhibited the enzme significantly.  相似文献   

2.
Bacteria of genus Bacillus are active producers of extracellular proteases, and characteristics of enzyme production by Bacillus species have been well studied. The aim of this experimental study is isolation and partial purification of protease enzyme from the Bacillus subtilis megatherium bacteria species. Protease enzyme is obtained by inducing spore genesis of bacteria from Bacillus species on suitable media. The partial purification was reali-zed by applying successively ammonium sulfate precipitation, dialysis, DEAE-cellulose ion exchange chromatography to the supernatant. In this study, the effect of substrate concentration, reaction time, the effect of inhibitor and activator on the optimum pH, optimum temperature, pH stability, and temperature stability was determined. Molecular weight of the obtained enzyme was investigated by SDS-PAGE. In this study, the specific activity of the supernatant, which was partially purified from Bacillus subtilis megatherium bacteria, was 10.4 U/mg, specific activity of supernatant was 13.5 U/mg after 80% ammonium sulfate fractionation. The final enzyme preparation was 1.1-fold purer than the crude homogenate. Molecular weight of the protease was determined, and it was found that the weight of enzyme was 45 kDa by using SDS-PAGE.  相似文献   

3.
The proteolytic activity produced by aBacillus subtilis isolated from a hot spring was investigated. Maximum protease production was obtained after 38 h of fermentation. Effects of various carbon and nitrogen sources indicate the requirement of starch and bacteriological peptone to be the best inducers for maximum protease production. Requirement for phosphorus was very evident, and the protease was secreted over a wide range of pH 5–11. The partially purified enzyme was stable at 60°C for 30 min. Calcium ions were effective in stabilizing the enzyme, especially at higher temperature. The enzyme was extremely salt tolerant and retained 100% activity in 5M NaCl over 96 h. The molecular weight of the purified enzymes as determined by SDS-PAGE was 28,000. The enzyme was completely inactivated by PMSF, but little affected by urea, sodium dodecyl sulfate, and sodium tripoly phosphate.  相似文献   

4.
Alajlani  Muaaz  Shiekh  Abid  Hasnain  Shahida  Brantner  Adelheid 《Chromatographia》2016,79(21):1527-1532

Bacillus subtilis strain BIA was used for the production of bioactive lipopeptides. Different extraction and purification methods were assayed as liquid–liquid extraction, and acid and ammonium sulfate precipitation followed by TLC, SPE, and gel filtration. Active fractions were further purified using RP-HPLC. The molecular mass of the purified product from HPLC was determined through Tris-Tricine SDS-PAGE and MALDI–TOF-MS. The results revealed that Bacillus subtilis strain BIA produced surfactin and iturin like compounds. Coproduction of surfactin and iturin like compounds by this strain is a remarkable trait for a potential biocontrol agent. This paper also includeds techniques that have been developed for the optimal and convenient extraction of bioactive lipopeptides from microbial origin.

  相似文献   

5.
The increased additive amount of adjuncts in the raw materials of Chinese beer requires the usage of protease to release more water-soluble proteins. Here, a metallo-neutral protease suited for brewing industry was purified from Bacillus amyloliquefaciens SYB-001. A 5.6-fold purification of the neutral protease was achieved with a 4-step procedure including ammonium sulfate precipitation, ion-exchange, hydrophobic interaction, and gel-filtration chromatography. The molecular mass of the enzyme was estimated to be 36.8 kDa. The protease was active and stable at a wide range of pH from 6.0–10.0 with an optimum at pH 7.0. The highest activity of the purified enzyme was found at 50 °C. The existence of manganese ion would specifically enhance the protease activity. Comparing with other commercial neutral proteases in China, adding the new neutral protease during mashing process would release more amino acids from wort such as aspartic acid, arginine, methione, and histidine, resulting in a better amino acid profile in wort. Moreover, the wort processed with the new neutral protease had a higher α-amino nitrogen concentration, which would ensure a vigorous yeast growth and better flavor. The study of the enzyme could lay a foundation for its industrial application and further research.  相似文献   

6.
Glutamate dehydrogenase (GDH) from Bacillus subtilis natto was purified to apparent homogeneity by ammonium sulfate precipitation, ion-exchange chromatography, size exclusion chromatography, and hydroxyapatite (HA) affinity chromatography. The GDH was purified 34-fold, with a yield of 41 % of total activity and a specific activity of 34.29 U/mg proteins. The molecular weight (Mr) of was measured at 47 kDa with sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) and 264 kDa with high-performance liquid chromatography (HPLC). The optimum pH and temperature for the deammoniation reaction were measured to be 7.5 and 30 °C, respectively. The active-site amino acid residues of GDH were investigated by chemical modification. The compounds 2,4,6-trinitrobenzenesulfonic acid (TNBS), phenylglyoxal (PG), and phenylmethanesulfonyl fluoride (PMSF) were used to modify lysine, arginine, and serine active site residues, respectively. After treatment with modifying reagents at concentrations of 1 mM, GDH activity fell to 10.7 % with TNBS, 83.3 % with PG, and 12.8 % with PMSF. However, with substrate protection, there was almost no loss in GDH activity following treatment with any modifying reagent. The kinetic parameters K m and V max were determined in each case. K m values for native GDH, 50 % TNBS-inactivated GDH, and 50 % PMSF-inactivated GDH were 0.037, 0.104, and 0.017 mM, respectively. V max values were 0.048, 0.022, and 0.031 mM/s, respectively. These results suggest that the active site contains one or more lysine residues that play a role in substrate binding and one or more serine residues that may maintain the enzyme conformation. However, arginine residues played less of a role in the activity of GDH.  相似文献   

7.
Alkaline pectin lyase (PNL) shows potential as a biological control agent against several plant diseases. We isolated and characterized a new Bacillus clausii strain that can produce 4,180?U/g of PNL using sugar beet pulp as a carbon source and inducer. The PNL was purified to apparent homogeneity using ultrafiltration, ammonium sulfate fractionation, DEAE Sepharose Fast Flow, and Sephadex G-75 gel filtration. The purified PNL was found to be a monomeric protein with a molecular weight of 35?kDa, as determined by sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE). It demonstrated optimal activity with K m of 0.87?mg/ml at pH?10.0 and 60?°C. The enzyme is stable in the pH range of 8.0?C10.0 and temperature ??40?°C. Ca2+ was found to stimulate the enzymatic activity of the PNL by up to 410?%. Mass spectrometric results gave 38?% match coverage with pectate lyase from B. clausii KSM-K16 (gi|56961845). The PNL was found to elicit disease resistance in cucumber seedlings, suggesting that it may have applications in biocontrol and sustainable agriculture.  相似文献   

8.
Glutathione reductase was purified from chicken liver and some characteristics of the enzyme were investigated. The purification procedure was composed of four steps: preparation of homogenate, ammonium sulfate precipitation, 2′,5′-ADP Sepharose 4B affinity chromatography, and Sephadex G-200 gel filtration chromatography. Owing to the four consecutive procedures, the enzyme was purified 1714-fold, with a yield of 38%. Specific activity at the final step was 120 enzyme unit (EU)/mg of protein. The purified enzyme showed a single band on sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE). The molecular weight of the enzyme was found to be 100 kDa by Sephadex G-200 gel filtration chromatography, and the subunit molecular weight was found to be 43 kDa by SDS-PAGE. Optimum pH, stable pH, optimum ionic strength, and optimum temperature were 7.0, 7.4, 0.75 M Tris-HCl buffer including 1 mM EDTA, and 50°C, respectively. K M and V max values for NADPH and glutathione disulfide (GSSG) substrates were also determined for the enzyme.  相似文献   

9.
An extracellular gelatinolytic enzyme obtained from the newly isolated Bacillus subtilis JB1, a thermophilic microorganism relevant to the aerobic biodegradation process of fish-meal production, was purified via ammonium sulfate precipitation, Sephadex G-200 Gel filtration chromatography, and one-dimensional gel electrophoresis separation and subsequently identified via peptide mass fingerprinting and chemically assisted fragmentation matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. The subtilisin JB1 gene was sequenced and its recombinant protein prosubtilisin JB1 was expressed in Escherichia coli, and the purified prosubtilisin JB1 (62 kDa) protein was digested with gelatin, bovine serum albumin, azocasein, fibrinogen, and the fluorogenic peptide substrate Ala-Ala-Phe-7-amido-4-methylcoumarin hydrochloride, whereas the serine protease inhibitors phenylmethylsulfonyl fluoride and chymostatin completely inhibited its enzyme activity at an optimal pH of 7.5. Thus, our results show that subtilisin JB1 may serve as a potential source material for use in industrial applications of proteolytic enzymes and microorganisms for fishery waste degradation and fish by-product processing.  相似文献   

10.
Bacillus sp. HR-08 screened from soil samples of Iran, is capable of producing proteolytic enzymes. 16S rDNA analysis showed that this strain is closely related to Bacillus subtilis, Bacillus licheniformis, Bacillus pumilus, Bacillus mojavensis, and Bacillus atrophaeus. The zymogram analysis of the crude extract revealed the presence of five extracellular proteases. One of the proteases was purified in three steps procedure involving ammonium sulfate precipitation, DEAE-Sepharose ionic exchange and Sephacryl S-200 gel filtration chromatography. The molecular mass of the enzyme on SDS-PAGE was estimated to be 29 kDa. The protease exhibited maximum activity at pH 10.0 and 60 °C and was inhibited by PMSF but it was not affected by cysteine inhibitors, suggesting that the enzyme is a serine alkaline protease. Irreversible thermoinactivation of enzyme was examined at 50, 60, and 70 °C in the presence of 10 mM CaCl2. Results showed that the protease activity retains more than 80% and 50% of its initial activity after incubation for 30 min at 60 and 70 °C, respectively. This enzyme had good stability in the presence of H2O2, nonionic surfactant, and local detergents and its activity was enhanced in the presence of 20% of dimethyl sulfoxide (DMSO), dimethyl formamide (DMF) and isopropanol. The enzyme retained more than 90% of its initial activity after pre-incubation 1 h at room temperature in the presence of 20% of these solvents. Also, activation can be seen for the enzyme at high concentration (50%, v/v) of DMF and DMSO.  相似文献   

11.
Bacillus sp. GHA1 was isolated from water samples and screened for the production of α-amylase. Maximum production of amylase by this strain occurs at 42 °C, pH 6.5 and 72 h after cultivation in production medium. The enzyme was purified through successive applications of ammonium sulfate precipitation, ion exchange and hydrophobic interaction chromatography, resulting in a single band with an apparent molecular weight of 66 kDa, as judged by SDS-PAGE. Calcium analysis of the purified enzyme revealed that it contained three metal ions per molecule. The new extracellular α-amylase is active in a wide range of pH with its maximum activity at pH values 5.5–8.0. The optimum temperature for enzyme activity is 57 °C and the presence of calcium has relatively low influence on its activity and thermostability. The Bacillus sp. GHA1 α-amylase with these properties may be suitable for use in detergent and food industries.  相似文献   

12.
An extracellular l-asparaginase produced by a protease-deficient isolate, Bacillus aryabhattai ITBHU02, was purified to homogeneity using ammonium sulfate fractionation and subsequent column chromatography on diethylaminoethyl-Sepharose fast flow and Seralose CL-6B. The enzyme was purified 68.9-fold with specific activity of 680.47 U mg?1. The molecular weight of the purified enzyme was approximately 38.8 kDa on SDS-PAGE and 155 kDa on native PAGE gel as well as gel filtration column revealing that the enzyme was a homotetramer. The optimum activity of purified l-asparaginase was achieved at pH 8.5 and temperature 40 °C. Kinetic studies depicted that the K m, V max, and k cat values of the enzyme were 0.257 mM, 1.537 U μg?1, and 993.93 s?1, respectively. Circular dichroism spectroscopy has showed that the enzyme belonged to α?+?β class of proteins with approximately 74 % α-helices and 12 % β-sheets. BLASTP analysis of N-terminal sequence K-T-I-I-E-A-V-P-E-L-K-K-I-A of purified l-asparaginase had shown maximum similarity with Bacillus megaterium DSM 319. In vitro cytotoxicity assays with HL60 and MOLT-4 cell lines indicated that the l-asparaginase has significant antineoplastic properties.  相似文献   

13.
Alkaline thiol protease named Prot 1 was isolated from a culture filtrate ofBotrytis cinerea. The enzyme was purified by ammonium sulfate fractionation, gel filtration, and ion-exchange chromatography. Thus, the enzyme was purified to homogeneity with specific activity of 30-fold higher than that of the crude broth. The purified alkaline protease has an apparent molecular mass of 43 kDa under denaturing conditions as estimated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The native molecular mass (45 kDa), determined by gel filtration, indicated that the alkaline protease has a monomeric form. The purified protease was biochemically characterized. The enzyme is active at alkaline pH and has a suitable and high thermostability. The optimal pH and temperature for activity were 9.0–10.0 and 60°C, respectively. This protease was stable between pH 5.0 and 12.0. The enzyme retained 85% of its activity by treatment at 50°C over 120 min; it maintained 50% of activity after 60 min of heating at 60°C. Furthermore, the protease retained almost complete activity after 4 wk storage at 25°C. The activity was significantly affected by thiol protease inhibitors, suggesting that the enzyme belongs to the alkaline thiol protease family. With the aim on industrial applications, we focused on studying the stability of the protease in several conditions. Prot 1 activity was not affected by ionic strength and different detergent additives, and, thus, the protease shows remarkable properties as a biodetergent catalyst.  相似文献   

14.
The MmsB gene product from Bacillus cereus ATCC14579 exhibits 3-hydroxypropionate dehydrogenase activity. It encodes the 32-kDa enzyme protein composed of 292 amino acids. Recombinant 3-hydroxyisobutyrate dehydrogenase (3-HIBADH) was purified 100-fold from cell extract by ammonium sulfate fractionation and column chromatography. The enzyme catalyzed oxidation of 3-hydroxypropionate (3-HP) between pH?7.0 and 10.0 with optimal activity between 8.8 and 9.0. A Km of 16.8 mM for 3-HP was calculated from a Lineweaver–Burk plot. The semialdehyde as products has been proven by spectrophotometric determination. The dehydrogenase apparently has no metal ion requirement. Kinetic determinations established that 3-HIBADH was more active with NADP+ than NAD+, which did not show similarity with previously reported 3-HIBADH except that from Thermus thermophilus.  相似文献   

15.
A thermostable D-hydantoinase of thermophilicBacillus stearothermophilus SD-1 was purified to homogeneity using an immuno-affinity chromatography. The affinity chromatography that employed polyclonal antibody immobilized on Sepharose 4B was simple to operate and gave a purification yield of 60% of enzyme activity. Molecular mass of the enzyme was determined to be about 133.9 kDa by gel filtration chromatography and the molecular mass of the subunit was 54 kDa on SDS-PAGE. Mass spectrometric analyses were also performed for the determination of the molecular mass of the native enzyme and its subunit. The apparent molecular masses were 51.1 and 102.1 kDa for the subunit and native enzyme, respectively. Based on the molecular masses determined by these two methods, it is suggested that the D-hydantoinase exists as a dimeric conformation in the cell. Isoelectric pH of the enzyme was observed to be 4.47. It was found that the enzyme requires one manganese ion per molecule of enzyme for the activity. The optimal pH and temperature for the catalytic activity were about 8.0 and 65‡C., respectively. The half-life of the enzyme was estimated to be 30 min at 80‡C., confirming that the enzyme purified is one of the most thermostable D-hydantoinase reported so far. Kinetic constants of the enzyme for different substrates were also determined.  相似文献   

16.
A protease from newly isolated Bacillus circulans M34 was purified by Q‐Sepharose anion exchange chromatography and Sepharose–bacitracin affinity chromatography followed by (NH4)2SO4 precipitation. The molecular mass of the purified enzyme was determined using SDS–PAGE. The optimum pH and temperature for protease activity were 11 and 50°C, respectively. The effect of various metal ions on protease activity was investigated. Alkaline protease from Bacillus circulans M34 wase activated by Zn2+, Cu2+ and Co2+ up to 31%. The purified protease was found to be stable in the organic solvents, surfactants and oxidizing agent. The substrate specificity of purified protease was investigated towards different substrates. The protease was almost completely inhibited by the serine protease inhibitor phenylmethanesulfonyl fluoride. The kinetic parameters of the purified protease, maximum rate (Vmax) and Michaelis constant (Km), were determined using a Lineweaver–Burk plot. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

17.
Bacillus subtilis SH21 was observed to produce an antifungal protein that inhibited the growth of F. solani. To purify this protein, ammonium sulfate precipitation, gel filtration chromatography, and ion-exchange chromatography were used. The purity of the purified product was 91.33% according to high-performance liquid chromatography results. Sodium dodecyl sulfate–polyacrylamide gel electrophoresis and liquid chromatography–tandem mass spectrometry (LC–MS/MS) analysis revealed that the molecular weight of the protein is 30.72 kDa. The results of the LC–MS/MS analysis and a subsequent sequence-database search indicated that this protein was a chitosanase, and thus, we named it chitosanase SH21. Scanning and transmission electron microscopy revealed that chitosanase SH21 appeared to inhibit the growth of F. solani by causing hyphal ablation, distortion, or abnormalities, and cell-wall depression. The minimum inhibitory concentration of chitosanase SH21 against F. solani was 68 µg/mL. Subsequently, the corresponding gene was cloned and sequenced, and sequence analysis indicated an open reading frame of 831 bp. The predicted secondary structure indicated that chitosanase SH21 has a typical a-helix from the glycoside hydrolase (GH) 46 family. The tertiary structure shared 40% similarity with that of Streptomyces sp. N174. This study provides a theoretical basis for a topical cream against fungal infections in agriculture and a selection marker on fungi.  相似文献   

18.
A new organic solvent-tolerant strain Bacillus megaterium AU02 which secretes an organic solvent-tolerant protease was isolated from milk industry waste. Statistical methods were employed to achieve optimum protease production of 43.6 U/ml in shake flask cultures. The productivity of the protease was increased to 53 U/ml when cultivated under controlled conditions in a 7-L fermentor. The protease was purified to homogeneity by a three-step process with 24 % yield and specific activity of 5,375 U/mg. The molecular mass of the protease was found to be 59 kDa. The enzyme was active over a wide range of pH (6.0–9.0), with an optimum activity at pH 7.0 and temperature from 40 to 70 °C having an optimum activity at 50 °C. The thermal stability of the enzyme increased significantly in the presence of CaCl2, and it retained 90 % activity at 50 °C for 3 h. The K m and V max values were determined as 0.722 mg/ml and 0.018 U/mg respectively. The metalloprotease exhibited significant stability in the presence of organic solvents with log P values more than 2.5, nonionic detergents and oxidising agent. An attempt was made to test the synthesis of aspartame precursor (Cbz-Asp-Phe-NH2) which was catalysed by AU02 protease in the presence of 50 % DMSO. These properties of AU02 protease make it an ideal choice for enzymatic peptide synthesis in organic media.  相似文献   

19.
A thermostable D-hydantoinase was isolated from thermophilic Bacillus thermocatenulatus GH-2 and purified to homogeneity by using immunoaffinity chromatography. The molecular mass of the enzyme was determined to be about 230 kDa, and a value of 56 kDa was obtained as a molecular mass of the subunit on sodium dodecyl sulfate-polyacrylamide gel electrophoresis, implying that oligomeric structure of the enzyme is tetrameric. Isoelectric pH of the enzyme was found to be approx 4.3. The enzyme required Mn2+ for the activity and exhibited its highest activity with phenylhydantoin as a substrate. The optimal pH and temperature for catalytic activity were about 7.5 and 65 degrees C, respectively. The half-life of the enzyme was estimated to be about 45 min at 80 degrees C.  相似文献   

20.
Cultivation ofBacillus subtilis-7A on waste from alcohol production yielded an active extracellular enzyme -amylase with MW 75 kDa. The enzyme was isolated from the culture medium by 60% saturated ammonium sulfate and purified until homogeneous by gel filtration on Sephadex G-100 and ion-exchange chromatography on DEAE-cellulose. The optimum temperatures for the complex and purified enzyme are 30 and 50°C, respectively. The optimum activity for both preparations occurred at pH 6.5. The substrate specificity of the isolated preparations was studied.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号