首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This paper is devoted to multiresolution schemes that use a stencil selection procedure in order to obtain adaptation to the presence of edges in the images. Since non adapted schemes, based on a centered stencil, are less affected by the presence of texture, we propose the introduction of some weight that leads to a more frequent use of the centered stencil in regions without edges. In these regions the different stencils have similar weights and therefore the selection becomes an ill-posed problem with high risk of instabilities. In particular, numerical artifacts appear in the decompressed images. Our attention is centered in ENO schemes, but similar ideas can be developed for other multiresolution schemes. A nonlinear multiresolution scheme corresponding to a nonlinear interpolatory technique is analyzed. It is based on a modification of classical ENO schemes. As the original ENO stencil selection, our algorithm chooses the stencil within a region of smoothness of the interpolated function if the jump discontinuity is sufficiently big. The scheme is tested, allowing to compare its performances with other linear and nonlinear schemes. The algorithm gives results that are at least competitive in all the analyzed cases. The problems of the original ENO interpolation with the texture of real images seem solved in our numerical experiments. Our modified ENO multiresolution will lead to a reconstructed image free of numerical artifacts or blurred regions, obtaining similar results than WENO schemes. Similar ideas can be used in multiresolution schemes based in other stencil selection algorithms.   相似文献   

2.
Summary. The recovery step is the most expensive algorithmic ingredient in modern essentially non-oscillatory (ENO) shock capturing methods on triangular meshes for the numerical simulation of compressible fluid flow. While recovery polynomials in Newton form are used in one-dimensional ENO schemes it is a priori not clear whether such useful as well as numerically stable form of polynomials exists in multiple dimensions. As was observed in [1] a very general answer to this question was provided by Mühlbach in two subsequent papers [15] and [16]. We generalise his interpolation theory further to the general recovery problem and outline the use of Mühlbach's expansion in ENO schemes. Numerical examples show the usefulness of this approach in the problem of recovery from cell average data. Received August 24, 1995 / Revised version received December 14, 1995  相似文献   

3.
An adaptive finite volume method for one‐dimensional strongly degenerate parabolic equations is presented. Using an explicit conservative numerical scheme with a third‐order Runge‐Kutta method for the time discretization, a third‐order ENO interpolation for the convective term, and adding a conservative discretization for the diffusive term, we apply the multiresolution method combining two fundamental concepts: the switch between central interpolation or exact computing of numerical flux and a thresholded wavelet transform applied to cell averages of the solution to control the switch. Applications to mathematical models of sedimentation‐consolidation processes and traffic flow with driver reaction, which involve different types of boundary conditions, illustrate the computational efficiency of the new method. © 2007 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 2007  相似文献   

4.
On the jump behavior of distributions and logarithmic averages   总被引:1,自引:0,他引:1  
The jump behavior and symmetric jump behavior of distributions are studied. We give several formulas for the jump of distributions in terms of logarithmic averages, this is done in terms of Cesàro-logarithmic means of decompositions of the Fourier transform and in terms of logarithmic radial and angular local asymptotic behaviors of harmonic conjugate functions. Application to Fourier series are analyzed. In particular, we give formulas for jumps of periodic distributions in terms of Cesàro–Riesz logarithmic means and Abel–Poisson logarithmic means of conjugate Fourier series.  相似文献   

5.
In this paper, we introduce a nonconforming Nitsche's extended finite element method (NXFEM) for elliptic interface problems on unfitted triangulation elements. The solution on each side of the interface is separately expanded in the standard nonconforming piecewise linear polynomials with the edge averages as degrees of freedom. The jump conditions on the interface and the discontinuities on the cut edges (the segment of edges cut by the interface) are weakly enforced by the Nitsche's approach. In the method, the harmonic weighted fluxes are used and the extra stabilization terms on the interface edges and cut edges are added to guarantee the stability and the well conditioning. We prove that the convergence order of the errors in energy and $L^2$ norms are optimal. Moreover, the errors are independent of the position of the interface relative to the mesh and the ratio of the discontinuous coefficients. Furthermore, we prove that the condition number of the system matrix is independent of the interface position. Numerical examples are given to confirm the theoretical results.  相似文献   

6.
WAVELET ESTIMATION FOR JUMPS IN A HETEROSCEDASTIC REGRESSION MODEL   总被引:1,自引:0,他引:1  
11砒roductlonAnalysis ofjumps Is very important Inpractlce.Thejumps often predicts that the in-vestlgated objects are subject to sudden山auges In山aractenstlcs.刊r exaxnple,the jumps ofn 6Xchs,lxge fat6 ill illAnC6 OftCh ShOW th6 lllfiU6DC6 of th6 11POTts;llt 6y6llts h th6 WOTld Oil6nance markt;thejumps ofa seismic signal In oil exploration m叫 imply that there eistsbroken stratum In the expfored strata.It is hot 6My to d6t6Ct th6 JllthPS SlllC6 th6 llld6Ylying Signal Is Oft6l…  相似文献   

7.
Convergence acceleration of the classical trigonometric interpolation by the Eckhoff method is considered, where the exact values of the jumps are approximated by solution of a system of linear equations. The accuracy of the jump approximation is explored and the corresponding asymptotic error of interpolation is derived. Numerical results validate theoretical estimates.  相似文献   

8.
An adaptive method is developed for solving one-dimensional systems of hyperbolic conservation laws, which combines the rezoning approach with the finite volume weighted essentially non-oscillatory (WENO) scheme. An a posteriori error estimate, used to equidistribute the mesh, is obtained from the differences between respective numerical solutions of 5th-order WENO (WENO5) and 3rd-order ENO (ENO3) schemes. The number of grids can be adaptively readjusted based on the solution structure. For higher efficiency, mesh readjustment is performed every few time steps rather than every time step. In addition, a high order conservative interpolation is used to compute the physical solutions on the new mesh from old mesh based on the finite volume ENO reconstruction. Extensive examples suggest that this adaptive method exhibits more accurate resolution of discontinuities for a similar level of computational time comparing with that on a uniform mesh.  相似文献   

9.
A new fast algorithm based on the augmented immersed interface method and a fast Poisson solver is proposed to solve three dimensional elliptic interface problems with a piecewise constant but discontinuous coefficient. In the new approach, an augmented variable along the interface, often the jump in the normal derivative along the interface is introduced so that a fast Poisson solver can be utilized. Thus, the solution of the Poisson equation depends on the augmented variable which should be chosen such that the original flux jump condition is satisfied. The discretization of the flux jump condition is done by a weighted least squares interpolation using the solution at the grid points, the jump conditions, and the governing PDEs in a neighborhood of control points on the interface. The interpolation scheme is the key to the success of the augmented IIM particularly. In this paper, the key new idea is to select interpolation points along the normal direction in line with the flux jump condition. Numerical experiments show that the method maintains second order accuracy of the solution and can reduce the CPU time by 20-50%. The number of the GMRES iterations is independent of the mesh size.  相似文献   

10.
Following ideas of Abgrall, four different implementations of a third-order ENO scheme on general triangulations are described and examined. Two implementations utilize implicit time stepping where the resulting linear systems are solved by means of a preconditioned GMRES method. Two other schemes are constructed using an explicit Adams method in time. Quadratic polynomial recovery is used to result in a formally third-order accurate space discretisation. While one class of implementations makes use of cell averages defined on boxes and thus is close in spirit to the finite volume idea, the second class of methods considered is completely node-based. In this second case the interpretation as a true finite volume recovery is completely lost but the recovery process is much simpler and cheaper than the original one. Although one would expect a consistency error in the finite difference type implementations no such problem ever occurred in the numerical experiments.Dedicated to Willi Törnig on the occasion of his 65th birthday  相似文献   

11.
In this research, a class of radial basis functions (RBFs) ENO/WENO schemes with a Lax–Wendroff time discretization procedure, named as RENO/RWENO‐LW, for solving Hamilton–Jacobi (H–J) equations is designed. Particularly the multi‐quadratic RBFs are used. These schemes enhance the local accuracy and convergence by locally optimizing the shape parameters. Comparing with the original WENO with Lax–Wendroff time discretization schemes of Qiu for HJ equations, the new schemes provide more accurate reconstructions and sharper solution profiles near strong discontinuous derivative. Also, the RENO/RWENO‐LW schemes are easy to implement in the existing original ENO/WENO code. Extensive numerical experiments are considered to verify the capability of the new schemes.  相似文献   

12.
We study the spatial decay of eigenfunctions of non-local Schrödinger operators whose kinetic terms are generators of symmetric jump-paring Lévy processes with Kato-class potentials decaying at infinity. This class of processes has the property that the intensity of single large jumps dominates the intensity of all multiple large jumps. We find that the decay rates of eigenfunctions depend on the process via specific preference rates in particular jump scenarios, and depend on the potential through the distance of the corresponding eigenvalue from the edge of the continuous spectrum. We prove that the conditions of the jump-paring class imply that for all eigenvalues the corresponding positive eigenfunctions decay at most as rapidly as the Lévy intensity. This condition is sharp in the sense that if the jump-paring property fails to hold, then eigenfunction decay becomes slower than the decay of the Lévy intensity. We furthermore prove that under reasonable conditions the Lévy intensity also governs the upper bounds of eigenfunctions, and ground states are comparable with it, i.e., two-sided bounds hold. As an interesting consequence, we identify a sharp regime change in the decay of eigenfunctions as the Lévy intensity is varied from sub-exponential to exponential order, and dependent on the location of the eigenvalue, in the sense that through the transition Lévy intensity-driven decay becomes slower than the rate of decay of the Lévy intensity. Our approach is based on path integration and probabilistic potential theory techniques, and all results are also illustrated by specific examples.  相似文献   

13.
We present and analyze a new fictitious domain model for the Brinkman or Stokes/Brinkman problems in order to handle general jump embedded boundary conditions (J.E.B.C.) on an immersed interface. Our model is based on algebraic transmission conditions combining the stress and velocity jumps on the interface Σ separating two subdomains: they are well chosen to get the coercivity of the operator. It is issued from a generalization to vector elliptic problems of a previous model stated for scalar problems with jump boundary conditions (Angot (2003, 2005) [2], [3]). The proposed model is first proved to be well-posed in the whole fictitious domain and some sub-models are identified. A family of fictitious domain methods can be then derived within the same unified formulation which provides various interface or boundary conditions, e.g. a given stress of Neumann or Fourier type or a velocity Dirichlet condition. In particular, we prove the consistency of the given-traction E.B.C. method including the so-called do nothing outflow boundary condition.  相似文献   

14.
假定标的资产服价格的跳过程服从一类特殊的更新跳过程,考虑多个跳源影响,在Vasicek扩展利率模型下,利用鞅方法给出连续履约价期权的定价公式.  相似文献   

15.
We present a well-posed model for the Stokes/Brinkman problem with a family of jump embedded boundary conditions (J.E.B.C.) on an immersed interface with weak regularity assumptions. It arises from a general framework recently proposed for fictitious domain problems. Our model is based on algebraic transmission conditions combining the stress and velocity jumps on the interface Σ separating the fluid and porous domains. These conditions are well chosen to get the coercivity of the operator. Then, the general framework allows us to prove new results on the global solvability of some models with physically relevant stress or velocity jump boundary conditions for the momentum transport at a fluid–porous interface. The Stokes/Brinkman problem with Ochoa-Tapia and Whitaker (1995) [9], [10] interface conditions and the Stokes/Darcy problem with Beavers and Joseph (1967) [13] conditions are both proved to be well-posed, by an asymptotic analysis. Up to now, only the Stokes/Darcy problem with Saffman (1971) [15] approximate interface conditions with negligible tangential porous velocity was known to be well-posed.  相似文献   

16.
We study a zero-sum differential game with hybrid controls in which both players are allowed to use continuous as well as discrete controls. Discrete controls act on the system at a given set interface. The state of the system is changed discontinuously when the trajectory hits predefined sets, an autonomous jump set A or a controlled jump set C, where one controller can choose to jump or not. At each jump, the trajectory can move to a different Euclidean space. One player uses all the three types of controls, namely, continuous controls, autonomous jumps, and controlled jumps; the other player uses continuous controls and autonomous jumps. We prove the continuity of the associated lower and upper value functions V and V+. Using the dynamic programming principle satisfied by V and V+, we derive lower and upper quasivariational inequalities satisfied in the viscosity sense. We characterize the lower and upper value functions as the unique viscosity solutions of the corresponding quasivariational inequalities. Lastly, we state an Isaacs like condition for the game to have a value This work was partially supported by Grants DRDO 508 and ISRO 050 to the Non-linear Studies Group, Indian Institute of Science. The first author is a University Grant Commission Research Fellow and the financial support is gratefully acknowledged. The authors thank Prof. M.K. Ghosh, Department of Mathematics, Indian Institute of Science, for introducing the problem and thank the referee for useful suggestions.  相似文献   

17.
This work deals with backward stochastic differential equations (BSDEs for short) with random marked jumps, and their applications to default risk. We show that these BSDEs are linked with Brownian BSDEs through the decomposition of processes with respect to the progressive enlargement of filtrations. We prove that the equations have solutions if the associated Brownian BSDEs have solutions. We also provide a uniqueness theorem for BSDEs with jumps by giving a comparison theorem based on the comparison for Brownian BSDEs. We give in particular some results for quadratic BSDEs. As applications, we study the pricing and the hedging of a European option in a market with a single jump, and the utility maximization problem in an incomplete market with a finite number of jumps.  相似文献   

18.
1. IntroductionDetection of jump points often arises in many practical problems such as signal analysis,.... fimage processing, seismic exploratioll and phonetic identification. FOr examPle, financialeconollilsts often wad to know if abrupt changes occur in an exchange rate series sincethese changes edicted, are affecting or will affect fin-ancial market; engineers concern abolltwhether there exist jumps in a seismic signal in oil exploration bacause these jumps maypredict that there exists br…  相似文献   

19.
This paper studies the Hankel determinants generated by a discontinuous Gaussian weight with one and two jumps. It is an extension in a previous study, in which they studied the discontinuous Gaussian weight with a single jump. By using the ladder operator approach, we obtain a series of difference and differential equations to describe the Hankel determinant for the single jump case. These equations include the Chazy II equation, continuous and discrete Painlevé IV. In addition, we consider the large n behavior of the corresponding orthogonal polynomials and prove that they satisfy the biconfluent Heun equation. We also consider the jump at the edge under a double scaling, from which a Painlevé XXXIV appeared. Furthermore, we study the Gaussian weight with two jumps and show that a quantity related to the Hankel determinant satisfies a two variables' generalization of the Jimbo‐Miwa‐Okamoto σ‐form of the Painlevé IV.  相似文献   

20.
Total variation (TV) denoising is still attracting attention with theoretical and computational motivations, for its conceptual simplicity of solving a lasso-like convex problem and its good properties for preserving sharp edges and contours in objects with spatial structures like natural images, although more modern and recent techniques specifically tailored to image processing have been developed. TV induces variation-sparsity in the sense that the reconstruction is piecewise constant with a small number of jumps. A threshold parameter λ controls the number of jumps and the quality of the estimation. Since calculation of the TV estimate in high dimension is computationally intensive for a given λ, we propose to calculate the TV estimate for only two sequential λ’s. Our adaptive procedure is based on large deviation of stochastic processes and extreme value theory. We also show that TV can perform exact segmentation in dimension one, under an alternating sign condition for some prescribed threshold. We apply our procedure to denoise a collection of 1D and 2D test signals verifying empirically the effectiveness of our approach. Codes are given to reproduce our results in a provided PURL.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号