首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Results are reported of an experimental determination by double-charge transfer spectroscopy of the previously unknown double-ionization energies of the fluorinated benzene molecules C6H5F, l,2-C6H4F2, 1,3-C6H4F2, 1,4-C6H4F2, 1,2,3-C6H3F3, 1,2,4-C6H3F3, 1,3,5-C6H3F3, 1,2,3,4-C6H2F4, 1,2,3,5-C6H2F4, 1,2,4,5-C6H2F4, and C6HF5. The data are remarkably similar; the lowest double-ionization energies for all the molecules are within ±0.5 of 25.7 eV, and the data for higher energies suggest that the distributions of electronic state energies for the dications of the molecules show only small variations.  相似文献   

2.
This paper deals with the mechanisms of localization of Franck-Condon vibronic coupling of πσ*- or πlπ*-orbital type in a few vibrational modes, (LVM) in excited electronic states of polyatomic molecules. The analysis of vibronic coupling uses highly symmetric basis sets (for representing MO structures and normal coordinates ξR) as well as simplified models that relate the shift ΔR of the electron potential minima along the normal coordinates to the MO structure and to ξR in the form of analytical expressions. The modes that are active in LVM are determined from the experimental luminescence spectra. These ideas about approximately high local symmetry of vibronic coupling in benzene fragments as well as the estimates of ΔR depending on variations in the MO structure explain the experimental results. L. Ya. Karpov Physicochemical Scientific Research Institute. Translated fromZhurnal Strukturnoi Khimii, Vol. 36, No. 2, pp. 286–291, March–April, 1995. Translated by L. Smolina  相似文献   

3.
The broad band displayed by pilled-up benzene molecules in Raman-like scale has the same nature as the one produced by chain polymers as BSA and PGA.  相似文献   

4.
5.
In this paper, we investigate the gyroscopic motion of a benzene molecule C6H6, which comprises an inner carbon ring and an outer hydrogen ring, and is suspended rigidly inside a metal-organic framework. The metal-organic framework provides a sterically unhindered environment and an electronic barrier for the benzene molecule. We model such gyroscopic motion from the inter-molecular interactions between the benzene ring and the metal-organic framework by both the Columbic force and the van der Waals force. We also capture additional molecular interactions, for example due to sterical compensations arising from the carboxylate ligands between the benzene molecule and the framework, by incorporating an extra empirical energy into the total molecular energy. To obtain a continuous approximation to the total energy of such a complicated atomic system, we assume that the atoms of the metal-organic framework can be smeared over the surface of a cylinder, while those for the benzene molecule are smeared over the contour line of the molecule. We then approximate the pairwise molecular energy between the molecules by performing line and surface integrals. We firstly investigate the freely suspended benzene molecule inside the framework and find that our theoretical results admit a two-fold flipping, with the possible maximum rotational frequency reaching the terahertz regime, and gigahertz frequencies at room temperature. We also show that the electrostatic interaction and the thermal energy dominate the gyroscopic motion of the benzene molecule, and we deduce that the extra energy term could possibly reduce the rotational frequency of the rigidly suspended benzene molecule from gigahertz to megahertz frequencies at room temperature, and even lower frequencies might be obtained when the strength of these interactions increases.  相似文献   

6.
Propofol (2,6-diisopropylphenol) is a broadly used general anesthetic. By combining spectroscopic techniques such as 1- and 2-color REMPI, UV/UV hole burning, infrared ion-dip spectroscopy (IRIDS) obtained under cooled and isolated conditions with high-level ab initio calculations, detailed information on the molecular structure of propofol and on its interactions with water can be obtained. Four isomers are found for the bare propofol, while only three are detected for the monohydrated species and two for propofol·(H(2)O)(2). The isopropyl groups do not completely block the OH solvation site, but reduce considerably the strength of the hydrogen bonds between propofol and water. Such results may explain the high mobility of propofol in the GABA(A) active site, where it cannot form a strong hydrogen bond with the tyrosine residue.  相似文献   

7.
8.
The effects of aqueous solvation on the thermochemistry of reactions between mercury and small halogen molecules has been investigated by the microsolvation approach using ab initio and density functional theory (DFT) calculations. The structures, vibrational frequencies, and binding energies of 1, 2, and 3 water molecules with mercury-halide (HgBr2, HgBrCl, HgCl2, HgBr, and HgCl) and related mercury and halogen species (Br2, BrCl, Cl2, Cl, Hg, and Br) have been computed with second order M?ller-Plesset perturbation theory (MP2) and the B3LYP density functional method. Accurate incremental water binding energies have been obtained at the complete basis set (CBS) limit using sequences of correlation consistent basis sets, including higher order correlation effects estimated from coupled cluster calculations. The resulting energetics were used to calculate the influence of water molecules on the thermochemistry of a number of reactions between mercury and small halogen-containing molecules. In general, the presence of water favors the formation of oxidized mercury halide species.  相似文献   

9.
10.
11.
Graphene coating is commonly used to improve the performance of electrode materials,while its steric hindrance effect hampers fast ion transport with compromised rate capability.Herein,a unique single-walled carbon nanotubes(SWNTs)coating layer,as an alternative to graphene,has been developed to improve the battery behavior of iron-based anodes.Benefiting from the structure merits of mesoporous SWNTs layer for fast electron/ion transport and hollow Fe3O4 for volume accommodation,as-prepared Fe3O4@SWNTs exhibited excellent lithium storage performance.It delivers a high capacity,excellent rate capability,and long lifespan with capacities of 582 mA·h·g-1 at 5 A·g-1 and 408 mA·h·g-1 at 8 A·g-1 remained after 1000 cycles.Such performance is better than graphene-coated Fe3O4 and other SWNT-Fe3O4 architectures.Besides,SWNTs coating is also used to improve the sodium and potassium storage performance of FeSe2.The kinetics analysis and ex-situ experiment further reveal the effect of SWNTs coating for fast electron/ion transfer kinetics and good structure stability,thus leading to the superior performance of SWNTs-coated composites.  相似文献   

12.
13.
Alkali-ion batteries,including lithium-ion batteries(LIBs),sodium-ion batteries(NIBs)and potassium-ion batteries(KIBs),with alloy-based anodes exhibit huge potential in high energy density due to the natural abundance,high theoretical capacity as well as suitable operating voltages.However,the practical application is severely hindered by the huge volume variation based on the alloying mechanism and inferior conductivity,especially for red phosphorus(P)and silicon(Si)anodes,which induces poor rate capability and fast capacity decay.Herein,we will briefly review fundamental advantages and challenges of alloy-based anode materials.Then,effective modification strategies of alloy-based anode materials for boosting the performance would be emphasized and discussed.Finally,we will share our perspectives and some opportunities to obtain high-performance alloy-based anode materials for further application.  相似文献   

14.
The Fourier transform microwave spectra of the hydrated forms of the tautomeric pair 2-pyridinone/2-hydroxypyridine (2PO/2HP) have been investigated in a supersonic expansion. Three hydrated species, 2PO-H?O, 2HP-H?O, and 2PO-(H?O)?, have been observed in the rotational spectrum. Each molecular complex was confidently identified by the features of the 1?N quadrupole hyperfine structure of the rotational transitions. The presence of water affects the tautomeric equilibrium -N═C(OH)- ? -NH-C(═O)-, which is shifted to the enol form for the bare molecules 2PO/2HP but to the keto tautomer for the hydrated forms.  相似文献   

15.
The conformational space of tryptamine has been thoroughly investigated using rotationally resolved laser-induced fluorescence spectroscopy. Six conformers could be identified on the basis of the inertial parameters of several deuterated isotopomers. Upon attaching a single water molecule, the conformational space collapses into a single conformer. For the hydrogen-bonded water cluster, this conformer is identified unambiguously as tryptamine A. In the complex, the water molecule acts as proton donor with respect to the amino group. An additional interaction with one of the aromatic C-H bonds selectively stabilizes the observed conformer more than all other conformers. Ab initio calculations confirm much larger energy differences between the conformers of the water complex than between those of the monomers.  相似文献   

16.
Quantum chemical calculations were performed to study the mechanism of ethene epoxidation with hydrogen peroxide. The calculations were carried out at the B3LYP/6-311+G(d,p) level of theory. The applicability of this functional to the problem at hand, including basis set effects, was validated by CCSD(T) and CASSCF based multireference MP2 calculations. A mechanism was determined where hydrogen peroxide becomes polarized in the transition state upon binding to the ethene molecule. The distant hydroxide fragment of the attached hydrogen peroxide molecule becomes partly negatively charged, while the other part of the molecule involves a proton and becomes partly positively charged. In the absence of water an activation energy of 139.7 kJ mol(-1) was determined for the isolated H(2)O(2) + C(2)H(4) system. By microsolvating with water, the impact of a hydrogen-bonded network on the activation energy was addressed. A 43.7 kJ mol(-1) lowering of the activation energy, DeltaE(a), was observed when including up to 4 water molecules in the model. This effect results from the stabilization of the proton and hydroxide fragments in the transition state. The findings are discussed in the context of previous theoretical studies on similar systems. Effects of adding or removing a proton to mimic acidic and alkaline conditions are addressed and the limitations of the model in solvating the excess charge are discussed.  相似文献   

17.
The MINDO/2 prime method is applied to the study of the force field of the benzene molecule. Force constants are recorded and compared with the data of Duinker and Mills. The wavenumbers of vibration are calculated for both perhydro and perdeuterobenzene, and the values compared with experiment.  相似文献   

18.
19.
We present an analysis of the structural, energetic and spectral features associated with the different hydrogen bonded networks found in the first few acetylene–water clusters AWn (n=1–4) from first principles calculations. Contrary to the predictions of an empirical interaction potential, acetylene is incorporated into a hydrogen bonded ring when it clusters with two or three water molecules. This structural pattern changes for n=4 with the formation of a water tetramer interacting with acetylene. This structural transition from n=3 to 4 is spectroscopically manifested by a qualitative change in the appearance of the infrared spectra of the corresponding global minima.  相似文献   

20.
Ionization in the energetical range between 35 eV and 75 eV of aqueous Li(+) microsolvation clusters may initialize several different electronic decay processes. Electronic decay following H(2)O 2s ionization in a cationic cluster is reported. Li ionization probes the efficiency of electron transfer mediated decay (ETMD) processes. We report estimated ETMD lifetimes in the range of 20-100 fs for clusters with one to five water monomers. Furthermore, tertiary electron emission may occur via a combined cascade of electron transfer mediated decay and intermolecular Coulombic decay.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号