首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A new explicitly correlated CCSD(T)-F12 approximation is presented and tested for 23 molecules and 15 chemical reactions. The F12 correction strongly improves the basis set convergence of correlation and reaction energies. Errors of the Hartree-Fock contributions are effectively removed by including MP2 single excitations into the auxiliary basis set. Using aug-cc-pVTZ basis sets the CCSD(T)-F12 calculations are more accurate and two orders of magnitude faster than standard CCSD(T)/aug-cc-pV5Z calculations.  相似文献   

2.
The explicitly-correlated coupled-cluster singles and doubles with perturbative triples method (CCSD(T)-F12) is implemented using the cusp conditions. Numerical tests for a set of 16 molecules have shown agreement of correlation energies within 1 mE(h) between the cusp-condition and fully-optimized CCSD(T)-F12 methods. Benchmark calculations on 13 chemical reactions with the cusp-condition CCSD(T)-F12 method reproduce experimental enthalpies within 2 kJ mol(-1). It is also shown that regular unitary-invariant ansatz cannot exactly satisfy singlet and triplet cusp conditions in open-shell situations. We present an extended ansatz which can handle both conditions exactly.  相似文献   

3.
We have optimized the lowest energy structures and calculated interaction energies for the CO(2)-Ar, CO(2)-N(2), CO(2)-CO, CO(2)-H(2)O, and CO(2)-NH(3) dimers with the recently developed explicitly correlated coupled cluster singles doubles and perturbative triples [CCSD(T)]-F12 methods and the associated VXZ-F12 (where X = D,T,Q) basis sets. For a given cardinal number, we find that results obtained with the CCSD(T)-F12 methods are much closer to the CCSD(T) complete basis set limit than the conventional CCSD(T) results. The relatively modest increase in the computational cost between explicit and conventional CCSD(T) is more than compensated for by the impressive accuracy of the CCSD(T)-F12 method. We recommend use of the CCSD(T)-F12 methods in combination with the VXZ-F12 basis sets for the accurate determination of equilibrium geometries and interaction energies of weakly bound electron donor acceptor complexes.  相似文献   

4.
5.
Chromium(III), manganese(II), iron(III), cobalt(II), nickel(II), copper(II), ruthenium(III), iridium(III), palladium(II) and platinum(II) complexes were synthesized with a 12-membered 1,4,7,10-tetraazadodeca-5,6,11,12-tetraene macrocylic ligand (L) and characterized by elemental analysis, molar conductance, magnetic susceptibility, IR, electronic, EPR and M?ssbauer [Fe(III)] spectral studies. The molar conductance measurements of all the complexes in DMF solution correspond to non-electrolytic nature for M(L)Cl2 complexes [where M=Mn(II), Co(II), Ni(II), Cu(II)], 1:1 electrolytes for M'(L)Cl3 complexes [where M'=Cr(III), Fe(III), Ru(III) and Ir(III)] and 1:2 electrolytes for M'(L)Cl2 complexes [where M'=Pd(II) and Pt(II)]. Thus, the complexes may be formulated as [M(L)C1(2)], [M'(L)C1(2)]C1 and [M'(L)]C1(2), respectively [where L=ligand]. All complexes were of the high-spin type and found to have six-coordinate octahedral geometry except the Pd(II) and Pt(II) complexes which were four coordinate, square planar and diamagnetic.  相似文献   

6.
Explicitly correlated CCSD(T)-F12a/b methods combined with basis sets specifically designed for this technique have been tested for their ability to reproduce standard CCSD(T) benchmark data covering 16 small molecules composed of hydrogen and carbon. The standard method calibration set was obtained with very large one-particle basis sets, including some aug-cc-pV7Z and aug-cc-pV8Z results. Whenever possible, the molecular properties (atomization energies, structures, and harmonic frequencies) were extrapolated to the complete basis set limit in order to facilitate a direct comparison of the standard and explicitly correlated approaches without ambiguities arising from the use of different basis sets. With basis sets of triple-ζ quality or better, the F12a variant was found to overshoot the presumed basis set limit, while the F12b method converged rapidly and uniformly. Extrapolation of F12b energies to the basis set limit was found to be very effective at reproducing the best standard method atomization energies. Even extrapolations based on the small cc-pVDZ-F12/cc-pVTZ-F12 combination proved capable of a mean absolute deviation of 0.20 kcal/mol. The accuracy and simultaneous cost savings of the F12b approach are such that it should enable high quality property calculations to be performed on chemical systems that are too large for standard CCSD(T).  相似文献   

7.
Chemically reasonable models of PR3 (R = Me, Et, iPr, and tBu) were constructed to apply the post Hartree-Fock method to large transition metal complexes. In this model, R is replaced by the H atom including the frontier orbital consistent quantum capping potential (FOC-QCP) which reproduces the frontier orbital energy of PR3. The steric effect is incorporated by the new procedure named steric repulsion correction (SRC). To examine the performance of this FOC-QCP method with the SRC, the activation barriers and reaction energies of the reductive elimination reactions of C2H6 and H2 from M(R1)2(PR2(3))2 (M = Ni, Pd, or Pt; R1 = Me for R2 = Me, Et, or iPr, or R1 = H for R2 = tBu) were evaluated with the DFT[B3PW91], MP4(SDQ), and CCSD(T) methods. The FOC-QCP method reproduced well the DFT[B3PW91]- and MP4(SDQ)-calculated energy changes of the real complexes with PMe3. For more bulky phosphine, the SRC is important to present correct energy change, in which the MP2 method presents reliable steric repulsion correction like the CCSD(T) method because the systems calculated in the SRC do not include a transition metal element. The monomerization energy of [RhCl(PiPr3)2]2 and the coordination energies of CO, H2, N2, and C2H4 with [RhCl(PiPr3)2]2 were theoretically calculated by the CCSD(T) method combined with the FOC-QCP and the SRC. The CCSD(T)-calculated energies agree well with the experimental ones, indicating the excellent performance of the combination of the FOC-QCP with the SRC. On the other hand, the DFT[B3PW91]-calculated energies of the real complexes considerably deviate from the experimental ones.  相似文献   

8.
 The electron affinities of Ti, V, Cr, Fe, Co, Ni, and Cu are computed using the density function theory and CCSD(T) approaches. Overall the CCSD(T) approach yields the best results. For this property, the B3LYP, BLYP, and BP86 functionals perform better than the BPW91, PBEPBE, and PBE1PBE ones. The accuracy of all the methods is higher if the number of 3delectrons is the same in the neutral atom and the anion. This is especially true for the density functional theory methods. Received: 23 January 2002 / Accepted: 1 April 2002 / Published online: 24 June 2002  相似文献   

9.
The reaction of copper beta-octabromo- meso-triarylcorrole derivatives with methyl 2,2-difluoro-2-(fluorosulfonyl)acetate has provided four beta-octakis(trifluoromethyl)corrole complexes, Cu[(CF 3) 8T( p-XP)C] (X = F, H, Me, OMe), in moderate yields. The new complexes present a conglomeration of remarkable substituent effects, both steric and electronic. DFT (OLYP/TZP) geometry optimization of Cu[(CF 3) 8TPC] (i.e., X = H) indicates a sterically hindered, strongly saddled geometry, with numerous short F...F nonbonded contacts of 2.5-2.9 A and certain beta carbons displaced by over 1.5 A relative to the mean corrole plane. The CF 3 groups generally appear as quartets in the (19)F NMR spectra, with unexpectedly large (5) J FF coupling constants of about 14 Hz, apparently a manifestation of the highly crowded structure. The eight CF 3 groups together exert a powerful influence on the redox potentials of the copper corrole core. Thus, the E 1/2ox of Cu[(CF 3) 8TPC] (1.4 V vs saturated calomel electrode) is a full half of a volt above that of Cu(TPC) (0.9 V) and a quarter of a volt above that of Cu(Br 8TPC) (1.14 V). Intriguingly, the beta CF 3 groups also greatly intensify the influence of the meso aryl substituents on the redox potentials, relative to the other Cu[Y 8T( p-XP)C] series, where Y = H, F, and Br. The Cu[(CF 3) 8T( p-XP)C] complexes also exhibit the most red-shifted optical spectra of any series of metallocorroles synthesized to date. Thus, between Cu(TPC) and Cu[(CF 3) 8T( p-MeO-P)C], the Soret maximum shifts by nearly 100 nm. The observed red-shifts are attributed in part to charge-transfer transitions of the Soret region and in part to the extreme nonplanar distortions.  相似文献   

10.
RCCSD(T) and UCCSD(T)-F12x calculations were performed on AsX(n) molecules, where X = H, F or Cl, and n = 1, 2 or 3, and related species, in order to evaluate their enthalpies of formation (ΔH(f)(?)). The recommended ΔH(f)(?) values obtained from the present investigation are AsH, 57.7(2); AsF, -7.9(3); AsCl, 27.2(4); AsH(2), 39.8(4); AsF(2), -96.6(9); AsCl(2), -17.8(10); AsH(3), 17.1(4); AsF(3)-196.0(5) and AsCl(3), -59.1(27) kcal mole(-1). These values are anchored only on one thermodynamic quantity, namely, ΔH(f)(?)(As) (= 70.3 kcal mole(-1)). In the calculations, the fully-relativistic small-core effective core potential (ECP10MDF) was used for As. Contributions from outer core correlation of As 3d(10) electrons were computed explicitly in both RCCSD(T) and UCCSD(T)-F12 calculations with additional tight basis functions designed for As 3d(10) electrons. Basis sets of up to augmented correlation-consistent polarized valence quintuple-zeta (aug-cc-pV5Z) quality were used in RCCSD(T) calculations and computed relative electronic energies were extrapolated to the complete basis set (CBS) limit. For the simplified, explicitly correlated UCCSD(T)-F12x calculations, basis sets of up to quadruple-zeta (QZ) quality were employed. Based on the RCCSD(T)/CBS benchmark values, the reliability of available theoretical and experimental values have been assessed.  相似文献   

11.
Cyclo-condensation of aroyl hydrazides with the cationic tungsten-dichlorodiazomethane complex [BrW(dppe)(2)(N(2)CCl(2))](+) affords neutral oxadiazolyldiazenido(1-) complexes which react readily with a wide range of transition and non-transition metal species to afford a novel series of crystallographically-characterised heteropolynuclear complexes containing bridging oxadiazolyldiazenido(1-) ligands.  相似文献   

12.
A new tripodal ligand [PO(NH2MePy)3] ( L ) (2MePy = 2‐(4‐methyl pyridyl)) have been synthesized by treating phosphorous oxychloride with 2‐Amino‐4‐methylpyridine in toluene under refluxing condition. The ligand was appeared as a white solid and characterized by several standard analytical and spectroscopic techniques such as FT‐IR, NMR (1H, 13C{1H} and 31P{1H}) and ESI‐MS spectroscopy. The ligand ( L ) undergone metal‐assisted hydrolysis of one P–N bond when treated it with hydrated metal nitrates, M(NO3)2·xH2O (M = Zn, Cu, Co and Ni) under hydrothermal reaction condition in DMF‐H2O (1:1). This results in the formation of four mononuclear complexes [{PO2(NH2MePy)2}2M] [M = Zn ( 1 ), Cu ( 2 ), Co ( 3 ), Ni ( 4 )], where ligand ( L ) hydrolyses to a anionic bis(organoamido)phosphate, [PO2(NH2MePy)2]. All complexes were completely characterized by various analytical techniques and their solid state molecular structures were established by single crystal X‐ray diffraction. All complexes are isostructural with a metal (II) ion situating at the centre of a distorted octahedron. Two tridentate [PO2(NH2MePy)2] ligands are coordinated to metal(II) ion through N‐ and O‐donor atoms, thus neutralizing the charge of the complex. Optical properties of all complexes in solid state have been studied. Moreover, antimicrobial activities of complexes 1 – 4 have been explored. To the best of our knowledge, this is the first report of such compounds investigated for their antimicrobial activities.  相似文献   

13.
Various layered boronitrides (LaN)(n)(T(M2)B(2)) (T(M) = transition metal; n = 2, 3) have been prepared using a high-pressure synthesis technique in which an inverse α-PbO-type T(M2)B(2) layer is separated by two or three rock salt-type LaN layers and these layers are connected through linear (BN) units. The electronic states of the distinguishing (BN) unit and intermediate rock salt-type LaN layer are discussed on the basis of density functional theory calculations. Bulk superconductivity has been found in LaNiBN (T(c) ≈ 4.1 K), CaNiBN (T(c) ≈ 2.2 K), and LaPtBN (T(c) ≈ 6.7 K), where the Fermi level E(F) is located in the bands composed of the T(M)(d)-B(2p) antibonding state and the main T(M)(d) band resides well below E(F). The non-superconductive T(M)-based compounds exhibit Pauli paramagnetic behavior, in which the highly itinerant nature of the electrons caused by strong T(M)(d)-B(2p) covalent bonding suppresses the long-range magnetic ordering.  相似文献   

14.
Solid complexes, RE(Et2dtc)3(phen) (RE=La, Pr, Nd, Sm-Lu), were synthesized with sodium diethyldithiocarbamate (NaEt2dtc3H2O),1,10-phenanthroline (o-phen·H2O) and hydrated lanthanide chlorides in absolute ethanol. The constant-volume combustion energies of complexes,ΔcU, were determined by a precise rotating-bomb calorimeter at 298.15 K. The standard enthalpies of combustion,ΔcHmθ, and standard enthalpies of formation,ΔfHmθ, were calculated for these complexes, respectively. The experiment results showed the "tripartite effect" of rare earth.  相似文献   

15.
Yang  Xuwu  Zhu  Li  Chen  Sanping  Gao  Shengli  Shi  Qizhen 《中国科学:化学(英文版)》2005,48(1):88-92

Solid complexes, RE(Et2dtc)3(phen) (RE=La, Pr, Nd, Sm—Lu), were synthesized with sodium diethyldithiocarbamate (NaEt2dtc3H2O), 1,10-phenanthroline (o-phen•H2O) and hydrated lanthanide chlorides in absolute ethanol. The constant-volume combustion energies of complexes, Δ C U, were determined by a precise rotating-bomb calorimeter at 298.15 K. The standard enthalpies of combustion, ΔCHm θ, and standard enthalpies of formation, ΔfHm θ, were calculated for these complexes, respectively. The experiment results showed the “tripartite effect” of rare earth.

  相似文献   

16.
A series of transition metal complexes derived from the pentadentate ligand PY5, 2,6-(bis-(bis-2-pyridyl)methoxymethane)pyridine, illustrates the intrinsic propensity of this ligand to complex metal ions. X-ray structural data are provided for six complexes (1-6) with cations of the general formula [M(II)(PY5)(Cl)](+), where M = Mn, Fe, Co, Ni, Cu, Zn. In complexes 1-4 and 6, the metal ions are coordinated in a distorted-octahedral fashion; the four terminal pyridines of PY5 occupy the equatorial sites while the axial positions are occupied by the bridging pyridine of PY5 and a chloride anion. Major distortions from an ideal octahedral geometry arise from displacement of the metal atom from the equatorial plane toward the chloride ligand and from differences in pyridine-metal-pyridine bond angles. The series of complexes shows that M(II) ions are consistently accommodated in the ligand by displacement of the metal ion from the PY5 pocket, a tilting of the axial pyridine subunit, and nonsymmetrical pyridine subunit ligation in the equatorial plane. The displacement from the ligand pocket increases with the ionic radius of M(II). The axial pyridine tilt, however, is approximately the same for all complexes and appears to be independent of the electronic ground state of M(II). In complex 5, the Cu(II) ion is coordinated by only four of the five pyridine subunits of the ligand, resulting in a square-pyramidal complex. The overall structural similarity of 5 with the other complexes reflects the strong tendency of PY5 to enforce a distorted-octahedral coordination geometry. Complexes 1-6 are further characterized in terms of solution magnetic susceptibility, electrochemical behavior, and optical properties. These show the high-spin nature of the complexes and the anticipated stabilization of the divalent oxidation state.  相似文献   

17.
A new bis(bidentate) azine ligand was prepared by linking (1Z,1′Z)-1,1′-{butane-1,4-diylbis[oxybenzene-4,1-diyl(1Z)ethyl-1-ylidene]}dihydrazine to salicylaldehyde. Two kinds of binuclear copper(II) and nickel(II) complexes with different stoichiometries were prepared. Reaction of bis(azine) ligand with Cu(II) and Ni(II) acetate at a 1: 1 mole ratio gave double-stranded binuclear bis(azine) complexes with stoichiometry [M(L)(H2O)2]2 containing [M(II)N2O2] centres while at a 2: 1 mole ratio, reaction of Cu(II) and Ni(II) chloride with bis(azine) resulted in dinuclear metal complexes with the general stoichiometry [M2(L)Cl2(H2O)2]. Structures of the bis(azine) ligand and its complexes were identified by elemental analysis, IR and UV-VIS spectra, magnetic susceptibility measurements, TGA, and powder XRD. Extraction properties of the bis(azine) ligand towards some transition metal cations and dichromate anions were also reported. It was found that the bis(azine) ligand does not extract cations but it has high extraction ability towards dichromate anions.  相似文献   

18.
Summary The interaction between HgII complexes of the thiols pencillamine and glutathione and some transition metal ions has been investigated potentiometrically. Mixedmetal complexes of the forms Hg(ps)2M and Hg(gs)2M (where M=Co or Ni), were detected. The complexes formed between glutathione disulphide with bivalent metal ions ZnII, NiII, CoII and CdII have also been studied. ZnII and NiII form the complexes M(gssg)H and M(gssg), while CoII and CdII form only the fully deprotonated complex M(gssg). The formation constants of the complexes were determined at 25°C and I=0.1 M (NaNO3). The concentration distribution of various complex species as a function of pH was evaluated.  相似文献   

19.
The transition metal acyl compounds [Co(L)(CO)3(COMe)] (L = PMe3, PPhMe2, P(4-Me-C6H4)3, PPh3 and P(4-F-C6H4)3), [Mn(CO)5(COMe)] and [Mo(PPh3)(eta(5)-C5H5)(CO)2(COMe)] react with B(C6F5)3 to form the adducts [Co(L)(CO)3(C{OB(C6F5)3}Me)] (L = PMe3, 1, PPhMe2, 2, P(4-Me-C6H4)3, 3, PPh3, 4, P(4-F-C6H4)3), 5, [Mn(CO)5(C{OB(C6F5)3}Me)] 6 and [Mo(eta(5)-C5H5)(PPh3)(CO)2(C{OB(C6F5)3}Me)], 7. Addition of B(C6F5)3 to a cooled solution of [Mo(eta(5)-C5H5)(CO)3(Me)], under an atmosphere of CO gave [Mo(eta(5)-C5H5)(CO)3(C{OB(C6F5)3}Me)] 8. In the presence of adventitious water, the compound [Co{HOB(C6F5)3}2{OP(4-F-C6H4)3}2] 9, was formed from [Co(P(4-F-C6H4)3)(CO)3(C{OB(C6F5)3}Me)]. The compounds 4 and 9 have been structurally characterised. The use of B(C6F5)3 as a catalyst for the CO-induced migratory-insertion reaction in the transition metal alkyl compounds [Co(PPh3)(CO)3(Me)], [Mn(CO)5(Me)], [Mo(eta(5)-C5H5)(CO)3(Me)] and [Fe(eta(5)-C5H5)(CO)2(Me)] has been investigated.  相似文献   

20.
The stability constants of the binary complexes of type PbB, PbB2, and the mixed ligand complexes of type PbAB have been studied by potentiometric pH titration technique at ionic strength I = 0.10 (KNO3) and at temperature 15, 25, 35 and 45°C respectively, where A = 2,2′-bipyridyl (bipy) or 1,10-phenanthroline (phen); B = malonate (mal), succinate (suc), or anthranilate (anth). The equalibrium constants ΔlogK,1 ΔΔG, ΔΔH, and ΔΔS of the reaction PbA + PbB = PbAB + Pb2+ have been calculated. The results show that the discriminating effects2 between the primary ligand (bipy or phen) and the secondary ligand (mal, suc or anth) in those non-transition metal mixed ligand complexes are also evident, and as a measurement of this effect, ΔΔH is more appropriate than ΔlogK. The possible reasons which lead to these results have been discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号