Targeted drug delivery using epidermal growth factor peptide‐targeted gold nanoparticles (EGFpep‐Au NPs) is investigated as a novel approach for delivery of photodynamic therapy (PDT) agents, specifically Pc 4, to cancer. In vitro studies of PDT show that EGFpep‐Au NP‐Pc 4 is twofold better at killing tumor cells than free Pc 4 after increasing localization in early endosomes. In vivo studies show that targeting with EGFpep‐Au NP‐Pc 4 improves accumulation of fluorescence of Pc 4 in subcutaneous tumors by greater than threefold compared with untargeted Au NPs. Targeted drug delivery and treatment success can be imaged via the intrinsic fluorescence of the PDT drug Pc 4. Using Pc 4 fluorescence, it is demonstrated in vivo that EGFpep‐Au NP‐Pc 4 impacts biodistribution of the NPs by decreasing the initial uptake by the reticuloendothelial system (RES) and by increasing the amount of Au NPs circulating in the blood 4 h after IV injection. Interestingly, in vivo PDT with EGFpep‐Au NP‐Pc 4 results in interrupted tumor growth when compared with EGFpep‐Au NP control mice when selectively activated with light. These data demonstrate that EGFpep‐Au NP‐Pc 4 utilizes cancer‐specific biomarkers to improve drug delivery and therapeutic efficacy over untargeted drug delivery. 相似文献
Cancer stands as a leading cause of mortality worldwide and diagnostics of cancer still faces drawbacks. Optical imaging of
cancer would allow early diagnosis, evaluation of disease progression and therapy efficiency. To that aim, we have developed
highly biocompatible PEG functionalized cadmium chalcogenide based three differently luminescent quantum dots (QDs) (CdS,
CdSe and CdTe). Folate targeting scheme was utilized for targeting cancer cell line, MCF-7. We demonstrate the biocompatibility,
specificity and efficiency of our nanotool in detection of cancer cells sparing normal cell lines with retained fluorescence
of functionalized QDs as parental counterpart. This is the first time report of utilizing three differently fluorescent QDs
and we have detailed about the internalization of these materials and time dependent saturation of targeting schemes. We present
here the success of utilizing our biocompatible imaging tool for early diagnosis of cancer. 相似文献
In recent years, semiconducting polymer nanoparticles have emerged as a new class of extraordinarily bright fluorescent probes. These polymer nanoparticles, which are primarily composed of π‐conjugated polymers, exhibit a variety of outstanding features, including exceptional fluorescence brightness, fast radiative rate, good photostability, facile surface functionalization, and low cytotoxicity. These advantageous characteristics make polymer nanoparticles highly promising for applications in biological imaging and sensing. This progress report highlights recent advances in the synthesis, characterization, and applications as bio‐labels or sensors of these highly emissive organic nanoparticles. 相似文献
In this paper, we report a method for recognizing human ovarian tumor(HOT) cells using fluorescent biological label based
on core-shell nanoparticles. The luminescent nanoparticles were synthesized with a water-in-oil(W/O)micromulsion technique.
The fluorescent silica core-shell nanoparticles modified with anti-HER2 antibody using bifunctional cross-linker glutaraldedhyde
targeted the corresponding tumor antigen in the cell surface of the SKOV3 ovarian cancer cells. The specific immunoreactivity
of antibody-nanoparticles with cells was characterized by laser scanning microscopy (LSM) and scanning electron microscope
(SEM). The results showed that the method offered potential advantages of sensitivity and simplicity due to high binding efficiency
between nanoparticles and cells and provided an alternative method for the detection of HOT. 相似文献
In this research, by simultaneously regulating the two major factors affecting the plasmonic enhanced fluorescence (PEF), spectral overlap and the distance between the fluororophores and the noble metal nanoparticles, a significantly enhanced fluorescent signal is achieved. Core-shell nanostructures composed of aspect ratio (AR) adjustable gold nanorods (GNRs) and various thickness of SiO2 are prepared and the decorated fluorophores are realized optimized PEF. A typical stimuli-responsive conjugated polymer, polydiacetylene (PDA), and a near-infrared (NIR) dye Cy5.5 are selected as fluorophores and their fluorescent signal are enhanced 7.26 and 4.41 times, respectively. Based on the optimized optical properties, a multifunctional antibody modified Mab-Cy5.5-GNRs@SiO2 is successfully demonstrated the targeting, imaging, and photothermal therapy (PTT) effects on SKOV-3 ovarian cancer cells. 相似文献
Comb-like PEMLn polymers with pendent PEG-PLLA side chains were synthesized as tissue anti-adhesion barriers. The comb-like
structure improved the flexibility of the films. Fluorescent polymer-biocompatible polymer guest-host materials were printed
on the films as marking dots. Without sacrificing rats on different days after surgery, degradation behaviors of the marked
films can be investigated non-invasively in the in-vivo imaging system (IVIS) by monitoring the location of fluorescent signals.
Degradation properties of PEML1/G26L35 films were adjusted by incorporating G26L35 oligomers. PEML1 and PEML1/G26L35 films
were very effective in preventing post-surgical tissue-adhesions. Degradation behaviors of various films observed in the animal
study were consistent with those investigated by the in-vivo imaging method. Fluorescent polymer/biocompatible polymer blends
were promising candidates for in-vivo imaging applications. 相似文献
In this paper, fluorescent carbon dots (CDs) loaded on silica (SiO2) spheres are synthesized by the one‐pot hydrothermal route, and then folic acids (FA) are covalently conjugated on the surface of SiO2 spheres. The formed SiO2@CDs‐FA composites can target specific tissues, e.g., cancer. The key of this method is the employment of (3‐aminopropyl)trimethoxysilane as bridge joint, which not only serves as surface passivation agents allowing the large scale synthesis of CDs with high quantum yield, but also enables SiO2@CDs composites further covalent conjugation of FA. The resultant SiO2@CDs composites have many advantages such as easy separation and purification, highly stable, well water‐soluble, and biocompatible. Moreover, the SiO2@CDs‐FA could be used as fluorescent probes for biological imaging in vitro. The uptake of the SiO2@CDs‐FA into HeLa cells is receptor‐mediated endocytosis, which is confirmed by a comparative study using FR‐negative 293T cells. Findings from this study suggest that the SiO2@CDs‐FA composites could be used as a platform for cancer diagnosis studies in various biological systems. 相似文献
Here we introduce novel optical properties and accurate sensitivity of Quantum dot (QD)-based detection system for tracking the breast cancer marker, HER2. QD525 was used to detect HER2 using home-made HER2-specific monoclonal antibodies in fixed and living HER2+ SKBR-3 cell line and breast cancer tissues. Additionally, we compared fluorescence intensity (FI), photostability and staining index (SI) of QD525 signals at different exposure times and two excitation wavelengths with those of the conventional organic dye, FITC. Labeling signals of QD525 in both fixed and living breast cancer cells and tissue preparations were found to be significantly higher than those of FITC at 460–495 nm excitation wavelengths. Interestingly, when excited at 330–385 nm, the superiority of QD525 was more highlighted with at least 4–5 fold higher FI and SI compared to FITC. Moreover, QDs exhibited exceptional photostability during continuous illumination of cancerous cells and tissues, while FITC signal faded very quickly. QDs can be used as sensitive reporters for in situ detection of tumor markers which in turn could be viewed as a novel approach for early detection of cancers. To take comprehensive advantage of QDs, it is necessary that their optimal excitation wavelength is employed. 相似文献
Metal oxides hold great promise as robust sonosensitizers for sonodynamic therapy (SDT). However, they usually suffer from limited production yield of reactive oxygen species (ROS) due to the fast recombination of ultrasound-triggered electrons and holes. Herein, porous lanthanum (La)-doped MnO2 (LMO) nanoparticles are firstly developed as promising sonosensitizers in SDT. The strategic introduction of La dopants greatly promotes the separation efficiency of ultrasound-triggered electrons and holes of MnO2, endowing them with significantly improved ROS yield. Consequently, the LMO with polyethylene glycol decoration exhibits good SDT activity toward breast cancer cells. This work highlights the doping strategy for the development of enhanced ROS production of metal oxide sonosensitizers for SDT. 相似文献
New metal-halide lamps were developed and their effect on the efficiency of photodynamic therapy (PDT) for cancer cells, murine thymic lymphoma cells (EL-4), was investigated. 5-Aminolevulinic acid-induced protoporphyrin IX was used as a photosensitizer. The metal-halide lamps were made by introducing sodium iodide (Na lamp), lithium iodide (Li lamp), and sodium iodide-lithium iodide mixture (Na-Li lamp) into their discharge tubes. These lamps emitted light in the range of 550 to 750 nm and had specific emission peaks at 580 and 600 nm for the Na lamp, 580, 610, and 680 nm for the Li lamp, and 580, 610, and 675 nm for the Na-Li lamp. Changes in the survival rate of EL-4 with increasing irradiation time indicated that PDT efficiency of the lamps increased in the order Li lamp < Na lamp < Na-Li lamp. We also found that a dark interval during irradiation of the light with the Na-Li lamp enhanced PDT efficiency. 相似文献
Multifunctional magnetic microcapsules (MMCs) for the combined cancer cells hyperthermia and chemotherapy in addition to MR imaging are successfully developed. A classical layer‐by‐layer technique of oppositely charged polyelectrolytes (poly(allylamine hydrochloride) (PAH) and poly(4‐styrene sulfonate sodium) (PSS)) is used as it affords great controllability over the preparation together with enhanced loading of the chemotherapeutic drug (doxorubicin, DOX) in the microcapsules. Superparamagnetic iron oxide (SPIOs) nanoparticles are layered in the system to afford MMC1 (one SPIOs layer) and MMC2 (two SPIOs layers). Most interestingly, MMC1 and MMC2 show efficient hyperthermia cell death and controlled DOX release although their magnetic saturation value falls below 2.5 emu g?1, which is lower than the 7–22 emu g?1 reported to be the minimum value needed for biomedical applications. Moreover, MMCs are pH responsive where a pH 5.5 (often reported for cancer cells) combined with hyperthermia increases DOX release predictably. Both systems prove viable when used as T2 contrast agents for MR imaging in HeLa cells with high biocompatibility. Thus, MMCs hold a great promise to be used commercially as a theranostic platform as they are controllably prepared, reproducibly enhanced, and serve as drug delivery, hyperthermia, and MRI contrast agents at the same time. 相似文献
Hydrophilic Cu3BiS3 nanoparticles (NPs) have been prepared using the thermal decomposition of precursor complexes in oily‐mixed solvent followed by coating the produced Cu3BiS3 NPs with polyvinylpyrrolidone (PVP). The resulting Cu3BiS3/PVP NPs remain stable in aqueous solutions over a long period of time, and meanwhile, they show low in vitro cytotoxicity and negligible toxicity to mice in vivo. Cu3BiS3/PVP NPs could operate as an efficient dual‐modal contrast agent to simultaneously enhance X‐ray computed tomography imaging and photothermal imaging of tumor model in vivo. Moreover, highly efficient ablation of cancer cells both in vitro and in vivo has been successfully achieved by combining Cu3BiS3/PVP NPs with near‐infrared (NIR) laser irradiation. All of the positive results in this study highlight that Cu3BiS3/PVP NPs could serve as a promising platform for cancer diagnosis and therapy. 相似文献
A seeded watermelon‐like mesoporous nanostructure (mSiO2@CdTe@SiO2, mSQS) composed of a novel dendritic mesoporous silica core, fluorescent CdTe quantum dots (QDs), and a protective solid silica shell is successfully fabricated by loading QDs into dendritic mesoporous silica nanoparticles through electrostatic interaction, and then coating with a solid silica shell by the modified Stöber method. The shell thickness of mSQS can be tuned from 0 to 32 nm as desired by controlling the reaction parameters, including the amount of silica precursor, tetraethyl orthosilicate, that is introduced, the solvent ratio (H2O:ethanol), and the amount of catalyst (NH3?H2O). These fluorescent mSiO2@QDs@SiO2 nanoparticles possess excellent stability and thickness‐dependent cytotoxicity, and are successfully applied to bioimaging. 相似文献
Biocompatible single‐component theranostic nanoagents instinctly affording multiple imaging modalities with satisfying therapeutic functions are highly desirable for anticancer treatments. Although cobalt‐based phosphides are well‐recognized as competent electrocatalysts, their potentials for biomedical applications remain unexplored. In this work, cobalt phosphide nanoparticles (CoP NPs) are developed to be a powerful theranostic agent for multimodal imaging and anticancer photothermal therapy. The uniform CoP NPs in a size of ≈21 nm are synthesized via a facile thermal decomposition method, followed by surface modification. The resultant CoP NPs exhibit excellent compatibility and stability in water as well as various physiological solutions. Supported by the good biocompatibility, strong near‐infrared absorption, and high photothermal conversion property, significant photothermal effect of the NPs is demonstrated, realizing efficient hyperthermia ablation on cancer cells. Importantly, the CoP NPs have shown considerable capabilities on high‐contrast in vitro and in vivo triple‐modal imaging, including infrared thermal (IRT), photoacoustic (PA), and T2‐weighted magnetic resonance (MR) imaging. This work has unraveled the promising potentials of CoP‐based nanoagent for precise diagnosis and efficient therapy. 相似文献
The bioreductive enzymes typically upregulated in hypoxic tumor cells can be targeted for developing diagnostic and drug delivery applications. In this study, a new fluorescent probe 4?(6?nitro?1,3?dioxo?1H?benzo[de]isoquinolin?2(3H)?yl)benzaldehyde (NIB) based on a nitronaphthalimide skeleton that could respond to nitroreductase (NTR) overexpressed in hypoxic tumors is designed and its application in imaging tumor hypoxia is demonstrated. The docking studies revealed favourable interactions of NIB with the binding pocket of NTR-Escherichia coli. NIB, which is synthesized through a simple and single step imidation of 4?nitro?1,8?naphthalic anhydride displayed excellent reducible capacity under hypoxic conditions as evidenced from cyclic voltammetry investigations. The fluorescence measurements confirmed the formation of identical products (NIB-red) during chemical as well as NTR?aided enzymatic reduction in the presence of NADH. The potential fluorescence imaging of hypoxia based on NTR-mediated reduction of NIB is confirmed using in-vitro cell culture experiments using human breast cancer (MCF?7) cells, which displayed a significant change in the fluorescence colour and intensity at low NIB concentration within a short incubation period in hypoxic conditions.
We propose methods for creating spherical gold particles of submicron size and silver rod-like particles with transverse dimensions of ~10 nm and an aspect ratio of 1: 10. Factors determining the frequency of plasmon resonances are considered, reagents are selected, and their ratios for obtaining prolate silver particles are determined. An optimal concentration of the surfactant is determined for creating most elongated silver particles. A shift of the plasmon absorption toward the near-IR range of the spectrum is obtained. 相似文献
Extremophiles are the group of organisms that are far overlooked for exploring novel biomaterials in the field of material science and bionanotechnology. Extremophilic bacterial‐sulfated exopolysaccharide, mauran (MR), is employed for the bioreduction and passivation of gold nanoparticles (AuNps) to enhance the biocompatibility of AuNps and used for photothermal ablation of cancer cells. Here, various concentrations of MR solution are tested for the reduction of HAuCl4 solution in the presence as well as in the absence of an external reducing agent, to produce mauran‐gold nanoparticles (MRAu Nps). These biocompatible nanocomposites are treated with cancer cell lines under in vitro conditions and NIR irradiated for complete ablation. MRAu Nps‐treated cancer cells on immediate exposure to infrared radiation from a femtosecond pulse laser of operating wavelength 800 nm are subjected to hyperthermia causing cell death. Biocompatible MR stabilization could fairly reduce the cytotoxicity caused by bare AuNps during biomedical applications. Application of a biocompatible polysaccharide from extremophilic bacterial origin for reduction and passivation of AuNps and used for a biomedical purpose is known to be first of its kind in bionanofusion studies. 相似文献