首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
以天然产物鬼臼毒素(1)为原料,合成了四种二醇及氨基醇类鬼臼毒素衍生物:4-O-乙基表鬼臼苦醇(4),(1R,2S,3R,4S)-1-3',4',5'-三甲氧基苯基-2-氨甲基-3-羟甲基-4-乙氧基-6,7-亚甲二氧基-1,2,3,4-四氢萘(5),(1R,2S,3R,4S)-1-3',4',5'-三甲氧基苯基-3-羟甲基-2-氨基-4-乙氧基-6,7-亚甲二氧基-1,2,3,4-四氢萘(6)和4-O-异丙基表鬼臼苦醇(7)。4~7及中间产物8~11都是新化合物。  相似文献   

2.
《Tetrahedron》1986,42(12):3259-3268
A short total synthesis of the bacterial coenzyme methoxatin (1) (4,5-dihydro-4, 5-dioxo-1H-pyrrolo[2,3-f]quinoline-2,7,9-tricarboxylic acid) is described. The route involves the two step conversion of 4-acetamido-2-benzy1oxybenzaldehyde (5b) into methyl 6-acctamido-4-benzyloxyindole-2-carboxylate (7b) (74%), followed by regioselective annulation of the third ring (55%),and debenzylation and oxidation with benzoyl t-butyl nitroxide to give the tricyclic quinone triester (13) (methoxatin triester) (83%).  相似文献   

3.
Eight novel three-coordinate boron compounds with the general formula BAr(2)L, in which Ar is mesityl and L is a 7-azaindolyl- or a 2,2'-dipyridylamino-functionalized aryl or thienyl ligand, have been synthesized by Suzuki coupling, Ullmann condensation methods, or simple substitution reactions (L = p-(2,2'-dipyridylamino)phenyl, 1; p-(2,2'-dipyridylamino)biphenyl, 2; p-(7-azaindolyl)phenyl, 3; p-(7-azaindolyl)biphenyl, 4; 3,5-bis(2,2'-dipyridylamino)phenyl, 5; 3,5-bis(7-azaindolyl)phenyl, 6; p-[3,5-bis(2,2'-dipyridylamino)phenyl]phenyl, 7; 5-[p-(2,2'-dipyridylamino)phenyl]-2-thienyl, 8). The structures of 1, 3, and 5-7 have been determined by X-ray diffraction analyses. These new boron compounds are bright blue emitters. Electroluminescent devices using compound 2 or 8 as the emitter and the electron-transport layer have been successfully fabricated. Molecular orbital calculations (Gaussian 98) have established that the blue emission of compounds 1-8 originates from charge transfer between the pi orbital of the ligand L and the p(pi) orbital of the boron center. The ability of these boron compounds to bind to metal centers to form supramolecular assemblies was demonstrated by treatment of compound 2 with Zn(O(2)CCF(3))(2), which generated a 1:1 chelate complex [2.Zn(O(2)CCF(3))(2)] (10), and also by treatment of compound 4 with AgNO(3), yielding a 2:1 coordination compound [(4)(2).Ag(NO(3))] (11). In the solid state, compounds 10 and 11 form interesting head-to-head and tail-to-tail extended structures that host solvent molecules such as benzene.  相似文献   

4.
Reactions of [RhH(PEt3)3] (1) or [RhH(PEt3)4] (2) with pentafluoropyridine or 2,3,5,6-tetrafluoropyridine afford the activation product [Rh(4-C5NF4)(PEt3)3] (3). Treatment of 3 with CO, 13CO or CNtBu effects the formation of trans-[Rh(4-C5NF4)(CO)(PEt3)2] (4a), trans-[Rh(4-C5NF4)(13CO)(PEt3)2] (4b) and trans-[Rh(4-C5NF4)(CNtBu)(PEt3)2] (5). The rhodium(III) compounds trans-[RhI(CH3)(4-C5NF4)(PEt3)2] (6a) and trans-[RhI(13CH3)(4-C5NF4)(PEt3)2] (6b) are accessible on reaction of 3 with CH3I or 13CH3I. In the presence of CO or 13CO these complexes convert into trans-[RhI(CH3)(4-C5NF4)(CO)(PEt3)2] (7a), trans-[RhI(13CH3)(4-C5NF4)(CO)(PEt3)2] (7b) and trans-[RhI(13CH3)(4-C5NF4)(13CO)(PEt3)2] (7c). The trans arrangement of the carbonyl and methyl ligand in 7a-7c has been confirmed by the 13C-13C coupling constant in the 13C NMR spectrum of 7c. A reaction of 4a or 4b with CH3I or 13CH3I yields the acyl compounds trans-[RhI(COCH3)(4-C5NF4)(PEt3)2] (8a) and trans-[RhI(13CO13CH3)(4-C5NF4)(PEt3)2] (8b), respectively. Complex 8a slowly reacts with more CH3I to give [PEt3Me][Rh(I)2(COCH3)(4-C5NF4)(PEt3)](9). On heating a solution of 7a, the complex trans-[RhI(CO)(PEt3)2] (10) and the C-C coupled product 4-methyltetrafluoropyridine (11) have been obtained. Complex 8a also forms 10 at elevated temperatures in the presence of CO together with the new ketone 4-acetyltetrafluoropyridine (12). The structures of the complexes 3, 4a, 5, 6a, 8a and 9 have been determined by X-ray crystallography. 19F-1H HMQC NMR solution spectra of 6a and 8a reveal a close contact of the methyl groups in the phosphine to the methyl or acyl ligand bound at rhodium.  相似文献   

5.
Two new noncentrosymmetric (NCS) polar oxides, BaMgTe(2)O(7) and BaZnTe(2)O(7), have been synthesized and characterized, with their crystal structures determined by single crystal X-ray diffraction. The iso-structural materials exhibit structures consisting of layers of corner-shared MgO(5) or ZnO(5), Te(6+)O(6), and Te(4+)O(4) polyhedra that are separated by Ba(2+) cations. The Te(4+) cation is found in a highly asymmetric and polar coordination environment attributable to its stereoactive lone-pair. The alignment of the individual TeO(4) polar polyhedra results in macroscopic polarity for BaMgTe(2)O(7) and BaZnTe(2)O(7). Powder second-harmonic generation (SHG) measurements revealed a moderate SHG efficiency of approximately 5 × KDP (or 200 × α-SiO(2)) for both materials. Piezoelectric charge constants of 70 and 57 pm/V, and pyroelectric coefficients of -18 and -10 μC·m(-2)·K(-1) were obtained for BaMgTe(2)O(7) and BaZnTe(2)O(7), respectively. Although the materials are polar, frequency dependent polarization measurements indicated that the materials are not ferroelectric, that is, the observed macroscopic polarization cannot be reversed. Infrared, UV-vis diffuse spectroscopy, and thermal properties were also measured. Crystal data: BaMgTe(2)O(7), orthorhombic, space group Ama2 (No. 40), a = 5.558(2) ?, b = 15.215(6) ?, c = 7.307(3) ?, V = 617.9(4) ?(3), and Z = 4; BaZnTe(2)O(7), orthorhombic, space group Ama2 (No. 40), a = 5.5498(4) ?, b = 15.3161(11) ?, c = 7.3098(5) ?, V = 621.34(8) ?(3), and Z = 4.  相似文献   

6.
《Tetrahedron》2003,59(48):9627-9633
5-Substituted 7-methoxy-2-(4- or 3-methoxyphenyl)-4(1H)-quinolones 8-17 have been synthesised in good yields from the corresponding 7-methoxy-2-(4- or 3-methoxyphenyl)-5-trifluoromethanesulfonate-4(1H)-quinolones 7 via palladium-mediated cross-coupling reactions or aromatic nucleophilic substitution (SNAr) reactions.  相似文献   

7.
Mononuclear palladium complexes [Pd(C^N)L(2)] (HC^N = 3-C(20)H(11)CH=NC(6)H(4)-p-C(2)H(5)) have been prepared with Pd bound to the peri site or to the ortho site of the perylenyl fragment. These metallations correspond, respectively to six-membered (L(2) = S(2)COMe (3); acac (4); Cl, PMe(3) (5); Cl, PPh(3) (6); S(2)CNEt(2) (7)) or five-membered (L(2) = S(2)COMe (8); acac (9)) isomeric palladacyclic compounds. The X-ray structures of 3, 5, 7 and 8 show that the perylenyl fragment remains essentially flat for 3, 7 and 8 and twisted for 5. Intermolecular π-π stacking of perylenyl rings is observed only for 7. All palladium complexes exhibit fluorescence associated to the perylene fragments, with emission quantum yields (in solution at room temperature) in the range 0.01-0.12 (compared to 0.13 for the free imine), and emission lifetimes ~ 1 ns. The complexes with five-membered palladacycles show lower quantum yields than their six-membered analogs. The similarity in shape of the luminescence spectra of these metallated complexes with perylene, although red-shifted, strongly suggests a perylene-dominated intraligand π-π* emissive state, metal-perturbed by interaction of the perylene orbitals with the palladium fragment.  相似文献   

8.
Several new mono- and dinuclear eta (5)-pentamethylcyclopentadienyl (Cp*) iridium(III) complexes bearing 5-methyltetrazolate (MeCN 4 (-)) have been synthesized and their molecular and crystal structures have been determined. For complexes incorporating 2,2'-bipyridine (bpy) or 1,10-phenanthroline (phen), both mononuclear kappa N (2)-coordinated and dinuclear mu-kappa N (1):kappa N (3)-bridging MeCN 4 complexes were obtained: [Cp*Ir(bpy or phen)(MeCN 4-kappa N (2))]PF 6 ( 1 or 3) and [{Cp*Ir(bpy or phen)} 2(mu-MeCN 4-kappa N (1):kappa N (3))](PF 6) 3 ( 2 or 4), respectively. It was confirmed by X-ray analysis that the dinuclear complex in 2 has a characteristic structure with a pyramidal pocket constructed from a mu-kappa N (1):kappa N (3)-bridging MeCN 4 (-) and two bpy ligands. In the case of analogous complexes with N, N-dimethyldithiocarbamate (Me 2dtc (-)), yellow platelet crystals of mononuclear kappa N (1)-coordinated complex, [Cp*Ir(Me 2dtc)(MeCN 4-kappa N (1))].HN 4CMe ( 5.HN 4CMe), and yellow prismatic crystals of dinuclear mu-kappa N (1):kappa N (4)-bridging one, [{Cp*Ir(Me 2dtc)} 2(mu-MeCN 4-kappa N (1):kappa N (4))]PF 6 ( 6), were deposited. The kappa N (1)- and kappa N (1):kappa N (4)-bonding modes of MeCN 4 (-) in these complexes presumably arise from the compactness of the Me 2dtc (-) coligand. 6 is the first example in which tetrazolates act as a mu-kappa N (1):kappa N (4)-bridging ligand. Furthermore, the molecular and crystal structures of dinuclear complexes having mu-kappa (2) S, N:kappa S-bridging 2-pyridinethiolate (2-Spy (-)) or 8-quinolinethiolate (8-Sqn (-)) ligands have been determined: [(Cp*Ir) 2(mu-2-Spy or 8-Sqn-kappa (2) S, N:kappa S) 2] ( 7 or 8). These thiolato-bridging complexes were stable toward the addition of 5-methyltetrazole (HN 4CMe), owing to the characteristic intramolecular stacking interaction between the pyridine or the quinoline rings. The 2-Spy complex of 7, however, reacted with an excess amount of Na(N 4CMe), resulting in cleavage of the IrN(py) bond and coordination of MeCN 4 (-) in the mu-kappa N (2):kappa N (3)-bridging mode: [(Cp*Ir) 2(mu-2-Spy-kappa S:kappa S) 2(mu-MeCN 4-kappa N (2):kappa N (3))]PF 6 ( 9). This bridging mode of MeCN 4 (-) was also observed in the triply bridging MeCN 4 complex: [(Cp*Ir) 2(mu-MeCN 4-kappa N (2):kappa N (3)) 3]PF 6 ( 10). In these various MeCN 4 complexes, the structural parameters of the MeCN 4 moiety were not perturbed by the difference in the bonding modes.  相似文献   

9.
The reaction of [PPh4]3[Re7C(CO)21] (1) with 1 or more equiv of Hg(OAc)2 in dichloromethane provides the monomercury derivative [PPh4]2[Re7C(CO)21HgOAc] (2) in high yield. However, in the presence of methanol the reaction of 1 with 2 equiv of Hg(OAc)2 yields the dimercury hexarhenium cluster compound [PPh4]2[Re6C(CO)18(HgOAc)2] (3) together with the dirhenium complex [PPh4][Re2(CO)6(mu-OMe)2(mu-OAc)] (4). The dimercury compound 3 reacts with various thiols HS-Z to form thiolate-substituted derivatives [PPh4]2[Re6C(CO)18(HgSZ)2] [Z = C6H4Br (5); C5H4N (6); C2H4COOH (7)]. All new compounds have been characterized by a combination of analytical and spectroscopic data, and the molecular structures of compounds 3-6 have been determined by X-ray crystallography.  相似文献   

10.
Hydrothermal reactions of the lanthanide chlorides with MeN(CH2CO2H)(CH2PO3H2), (H3L1) (or Me2NCH2PO3H2, H2L2) and sodium oxalate lead to seven new lanthanide oxalate phosphonate hybrids with three types of 3D network structures, namely, [Ln(C2O4){MeNH(CH2CO2)(CH2PO3H)}]0.5 H2O (Ln=Nd: 1; Eu: 2; Gd: 3), [Ln4(C2O4)5(Me2NHCH2PO3)2(H2O)4]2 H2O (Ln=La: 4, Nd: 5), [Ln3(C2O4)4(Me2NHCH2PO3)(H2O)6]6 H2O (Gd: 6, Er: 7). Their structures have been established by X-ray single-crystal diffraction. Complexes 1-3 are isostructural and feature a 3D network formed by the interconnection of 3D network of {Ln(H2L1)}2+ with 1D chains of {Ln(C2O4)}+. Complexes 4 and 5 are isostructural and feature a complex 3D network built from 3D network of lanthanide oxalate and {Ln4(HL2)2} units. The isostructural 6 and 7 form another type of 3D network composed of porous lanthanide-oxalate network inserted by 1D chains of lanthanide-oxalate phosphonate. Compounds 1, 5 and 7 are luminescent materials in the near IR region. Compounds 3 and 6 exhibit a broad blue fluorescent emission band at 451 and 467 nm, respectively. Compound 2 displays very strong and sharp emission bands at 592, 616 and 699 nm with a long luminescent lifetime of 1.13 ms.  相似文献   

11.
《Tetrahedron》1988,44(10):3005-3014
Nucleophilic substitution of 5-bromotriazoloisoquinoline (3) and of 7-bromo-3-methyltriazolopyridine (6) proceeds readily to give a range of 5-substituted triazoloisoquinolines (4a)-(4e), and of 7-substituted triazolopyridines (7a)-(7h) respectively. Triazoloisoquinolines have been converted into 1,3-disubstituted isoquinolines (11)-(13), (15), and (16), and triazolopyridines into 2,6-disubstituted pyridines (17)-(19). Of secondary amine nucleophiles, only piperidine reacted with 7-bromo-3-methyltriazolopyridine (6) to give the 7-substituted derivative (7g). A second product in this reaction was a 2,6-disubstituted pyridine (8); the similar compounds (20)-(24) were the only products when morpholine or N-acetylpiperazine were used. The reaction between 7-bromotriazolopyridine (9) and piperidine or morpholine gave in high yield the 2,6-disubstituted pyridines (25) and (26).  相似文献   

12.
A general route for the preparation of a series of dianionic Mo3S7 cluster complexes bearing dithiolate or diselenolate ligands, namely, [Mo3S7L3](2-) (where L = tfd (bis(trifluoromethyl)-1,2-dithiolate) (4(2-)), bdt (1,2-benzenedithiolate) (5(2-)), dmid (1,3-dithia-2-one-4,5-dithiolate) (6(2-)), and dsit (1,3-dithia-2-thione-4,5-diselenolate) (7(2-))) is reported by direct reaction of [Mo3S7Br6](2-) and (n-Bu)2Sn(dithiolate). The redox properties, molecular structure, and electronic structure (BP86/VTZP) of the 4(2-) to 7(2-) clusters have also been investigated. The HOMO orbital in all complexes is delocalized over the ligand and the Mo3S7 cluster core. Ligand contributions to the HOMO range from 61.67% for 4(2-) to 82.07% for 7(2-), which would allow fine-tuning of the electronic and magnetic properties. These dianionic clusters present small energy gaps between the HOMO and HOMO-1 orbitals (0.277-0.104 eV). Complexes 6(2-) and 7(2-) are oxidized to the neutral state to afford microcrystalline or amorphous fine powders that exhibit semiconducting behavior and present antiferromagnetic exchange interactions. These compounds are new examples of the still rare single-component conductors based on cluster magnetic units.  相似文献   

13.
Reaction between 7-azaindole and B(C6F5)3 quantitatively yields 7-(C6F5)3B-7-azaindole (4), in which B(C6F5)3 coordinates to the pyridine nitrogen of 7-azaindole, leaving the pyrrole ring unreacted even in the presence of a second equivalent of B(C6F5)3. Reaction of 7-azaindole with H2O-B(C6F5)3 initially produces [7-azaindolium]+[HOB(C6F5)3]- (5) which slowly converts to 4 releasing a H2O molecule. Pyridine removes the borane from the known complexes (C6F5)3B-pyrrole (1) and (C6F5)3B-indole (2), with formation of free pyrrole or indole, giving the more stable adduct (C6F5)3B-pyridine (3). The competition between pyridine and 7-azaindole for the coordination with B(C6F5)3 again yields 3. The molecular structures of compounds 4 and 5 have been determined both in the solid state and in solution and compared to the structures of other (C6F5)3B-N-heterocycle complexes. Two dynamic processes have been found in compound 4. Their activation parameters (DeltaH = 66 (3) kJ/mol, DeltaS = -18 (10) J/mol K and DeltaH = 76 (5) kJ/mol, DeltaS = -5 (18) J/mol K) are comparable with those of other (C6F5)3B-based adducts. The nature of the intramolecular interactions that result in such energetic barriers is discussed.  相似文献   

14.
Three new linear compounds of the type Co(3)(dpa)(4)X(2), where dpa is the anion of di(2-pyridyl)amine and X is NCS(-) (5), CN(-) (6), and N(CN)(2)(-) (7), have been prepared, and their structures and magnetic behavior have been studied. In all of them, including three different solvates of 5, the Co(3) chains are symmetrical with Co-Co distances of ca. 2.31-2.32 A. The appearance of four lines in the (1)H NMR spectra of the three compounds is also consistent with a symmetrical structure in solution. For all compounds, the magnetic behavior is quite similar with mu(eff) of ca. 1.9-2.0 micro(B) at temperatures between 1.8 and 200 K. As the temperature increases, the effective moments increase gradually, but since saturation is not reached, even at 400 K, the high-spin state cannot be assigned.  相似文献   

15.
King RB 《Inorganic chemistry》2001,40(12):2699-2704
The metallaboranes (CpM)(2)B(n)H(n+4) (M = Cr, Mo, W; n = 4, 5; Cp = eta(5)-C(5)H(5), eta(5)-C(5)Me(5)), (CpW)(2)B(7)H(9), (CpRe)(2)B(7)H(7), and (CpW)(3)B(8)H(9) have the 2v or 2v + 2 skeletal electrons for closo or isocloso deltahedra (v = number of polyhedral vertices) if the early transition metal vertices are assumed to contribute four or more internal orbitals rather than the usual three internal orbitals for BH vertices. The polyhedra for the metallaboranes (CpM)(2)B(n)H(n+4) (M = Cr, Mo, W; n = 4, 5) are derived from (n + 1)-gonal bipyramids by removal of an equatorial vertex. The deltahedra for the larger metallaboranes (CpW)(2)B(7)H(9), (CpRe)(2)B(7)H(7), and (CpW)(3)B(8)H(9) are derived from the corresponding B(n)H(n)(2)(-) deltahedra (n = 9 and 11 in these cases) by sufficient diamond-square-diamond processes to provide vertices of degrees > or = 6 for each of the CpM vertices. Reasonable skeletal bonding topologies in accord with the availability of skeletal electrons and orbitals consist of surface 2c-2e and 3c-2e bonds supplemented by metal-metal bonding through the center of the polyhedron.  相似文献   

16.
Two new ligands 7-anthracenylmethyl-13-methylpyridyl-1,4,10-trioxa-7,13-diazacyclopentadecane (L4) and 7-anthracenylmethyl-13-(2,2-dimethyl-2-hydroxyethyl)-1,4,10-trioxa-7,13-diazacyclopentadecane (L(5)) have been synthesized and characterized. Both derive from 7-anthracenylmethyl-1,4,10-trioxa-7,13-diazacyclopentadecane (L(3)) and differ for having a differently functionalized pendant arm covalently attached to the remaining secondary nitrogen donor of the macrocyclic framework. The protonation and coordination behavior of L(4), L(5), and the unbranched L(3) with metal ions have been studied in MeCN/H2O (1:1 v/v, 298.1 K, I = 0.1 M) using potentiometric methods. The crystal structures of L(3), [(H2L(3))(HL(3))](ClO4)3, and the complex [CdL(3)(NO3)2] have been determined by single-crystal X-ray methods. The fluorescent behavior of L(3)-L(5) in the presence of Cu(II), Zn(II), Cd(II), Hg(II), and Pb(II) has been studied as a function of pH in MeCN/H2O (1:1 v/v). The presence of Cu(II), Hg(II), or Pb(II) does not affect the fluorescent behavior observed for the three free ligands upon changing the pH. Interestingly, the fluorescent emission of L(3) and L(5) is selectively enhanced only in the presence of Cd(II) at basic pH. The same effect is observed for L4 in the presence of Cd(II) or Zn(II) at about pH 7.  相似文献   

17.
Regioselective routes for the synthesis of 1,3-(or 1,5-)diphenyl-4-aryl/heteroaryl-5-(or 3-)(methylthio)pyrazoles via Suzuki cross-coupling of 4-bromo (or 4-iodo)-1,3-(or 1,5-)diphenyl-5-(or 3-)(methylthio)pyrazoles have been reported.  相似文献   

18.
Treatment of p-tert-butylcalix[6]areneH(6) (H(6)tBu-L) or p-tert-butylcalix[8]areneH(8) (H(8)tBu-L(1)) with [MCl(5)] (M=Nb, Ta) in refluxing toluene or dichloromethane affords, after work-up, the complexes [{M(NCMe)Cl(2)}(2)(tBu-L)] (M=Nb (1), Ta (2)) and [(MCl(2))(2)(tBu-L(1)H(2))] (M=Nb (4), Ta (5)), respectively. Complex 1, as well as [{Nb(2)(mu-O)(2)(mu-Cl)(tBu-LH)}(2)] (3), is also available from [NbOCl(3)] and H(6)tBu-L. Reaction of [MOCl(3)] (M=Nb, Ta) with Li(3)(tBu-L(2)) in diethyl ether, where H(3)tBu-L(2) is p-tert-butylhexahomotrioxacalix[3]areneH(3), affords, after work-up, the trimeric complexes [{M(tBu-L(2))(mu-O)}(3)] (M=Nb (6), Ta (7)). The behaviour of 1 to 7 (not 3), as well as the known complexes [{(MCl)p-tert-butylcalix[4]arene}(2)] (M=Nb (8), Ta (9)) and [(MCl(2))p-tert-butylcalix[4]arene(OMe)] (M=Nb (10), Ta (11)), as pro-catalysts for the polymerisation of ethylene has been investigated. In the presence of dimethyl (or diethyl)aluminium chloride, methylaluminoxane or trimethylaluminium, these niobium and tantalum procatalysts are all active (<35 g mmol(-1) h(-1) bar(-1)), for the polymerisation of ethylene affording high-molecular-weight linear polyethylene. The dimethyleneoxa-bridged systems (derived from 6 and 7) are more active (84 and 46 g mmol(-1) h(-1) bar(-1), respectively) than the methylene-bridged systems. The molecular structures of 1-6 and 10 (acetonitrile solvate) are reported.  相似文献   

19.
The synthesis and characterization of ACuTe(2)O(7) (A = Sr(2+), Ba(2+), or Pb(2+)) have been carried out. Interestingly, SrCuTe(2)O(7) and PbCuTe(2)O(7) are centrosymmetric and isostructural, whereas BaCuTe(2)O(7) is noncentrosymmetric and polar. All of the materials contain [CuTe(2)O(7)](2-) layers stacked along the b-axis direction that are separated by the "A" cations. The layers are composed of corner-shared CuO(5), TeO(6), and TeO(4) polyhedra. The influence of the "A" cation on the polarity is described by bond valence concepts, including the bond strain index and global instability index. Infrared, UV-vis, thermogravimetric, differential thermal analysis, and magnetic measurements were performed on all three materials. For BaCuTe(2)O(7), second-harmonic generation (SHG), piezoelectric, and polarization measurements were performed. A moderate SHG efficiency of approximately 70 × α-SiO(2) was measured. In addition, we determined that BaCuTe(2)O(7) is not ferroelectric; that is, the macroscopic polarization is not reversible. For BaCuTe(2)O(7), a pyroelectric coefficient of -9.5 μC/m(2)·K at 90 °C and a piezoelectric charge coefficient of 49 pm/V were determined. Crystal data are the following: SrCuTe(2)O(7), orthorhombic, space group Pbcm (No. 57), a = 7.1464(7) ?, b = 15.0609(15) ?, c = 5.4380(5) ?, V = 585.30(10) ?(3), and Z = 4; PbCuTe(2)O(7), orthorhombic, space group Pbcm (No. 57), a = 7.2033(5) ?, b = 15.0468(10) ?, c = 5.4691(4) ?, V = 592.78(7) ?(3), and Z = 4.  相似文献   

20.
The bidentate ligands N-phenyl-o-phenylenediamine, H(2)((2)L(N)IP), or its analogue 2-(2-trifluoromethyl)anilino-4,6-di-tert-butylphenol, ((4)L(N)IP), react with [Co(II)(CH(3)CO(2))(2)]4H(2)O and triethylamine in acetonitrile in the presence of air yielding the square-planar, four-coordinate species [Co((2)L(N))(2)] (1) and [Co((4)L(O))(2)] (4) with an S=1/2 ground state. The corresponding nickel complexes [Ni((4)L(O))(2)] (8) and its cobaltocene reduced form [Co(III)(Cp)(2)][Ni((4)L(O))(2)] (9) have also been synthesized. The five-coordinate species [Co((2)L(N))(2)(tBu-py)] (2) (S=1/2) and its one-electron oxidized forms [Co((2)L(N))(2)(tBu-py)](O(2)CCH(3)) (2 a) or [Co((2)L(N))(2)I] (3) with diamagnetic ground states (S=0) have been prepared, as has the species [Co((4)L(O))(2)(CH(2)CN)] (7). The one-electron reduced form of 4, namely [Co(Cp)(2)][Co((4)L(O))(2)] (5) has been generated through the reduction of 4 with [Co(Cp)(2)]. Complexes 1, 2, 2 a, 3, 4, 5, 7, 8, and 9 have been characterized by X-ray crystallography (100 K). The ligands are non-innocent and may exist as catecholate-like dianions ((2)L(N)IP)(2-), ((4)L(N)IP)(2-) or pi-radical semiquinonate monoanions ((2)L(N)ISQ)(*) (-), ((4)L(N)ISQ)(*) (-) or as neutral benzoquinones ((2) L(N)IBQ)(0), ((4) L(N)IBQ)(0); the spectroscopic oxidation states of the central metal ions vary accordingly. Electronic absorption, magnetic circular dichroism, and EPR spectroscopy, as well as variable temperature magnetic susceptibility measurements have been used to experimentally determine the electronic structures of these complexes. Density functional theoretical (DFT) and correlated ab initio calculation have been performed on the neutral and monoanionic species [Co((1)L(N))(2)](0,-) in order to understand the structural and spectroscopic properties of complexes. It is shown that the corresponding nickel complexes 8 and 9 contain a low-spin nickel(II) ion regardless of the oxidation level of the ligand, whereas for the corresponding cobalt complexes the situation is more complicated. Spectroscopic oxidation states describing a d(6) (Co(III)) or d(7) (Co(II)) electron configuration cannot be unambiguously assigned.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号