首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The synthesis and photophysical and electrochemical properties of tris(homoleptic) complexes [Ru(tpbpy)3](PF6)2 (1) and [Os(tpbpy)3](PF6)2 (2) (tpbpy = 6'-tolyl-2,2':4',2' '-terpyridine) are reported. The ligand tpbpy is formed as the side product during the synthesis of 4'-tolyl-2,2':6',2' '-terpyridine (ttpy) and characterized by single-crystal X-ray diffraction: monoclinic, P21/c. The tridentate tpbpy coordinates as a bidentate ligand. The complexes 1 and 2 exhibit two intense absorption bands in the UV region (200-350 nm) assignable to the ligand-centered (1LC) pi-pi* transitions. The ruthenium(II) complex exhibits a broad absorption band at 470 nm while the osmium(II) complex exhibits an intense absorption band at 485 nm and a weak band at 659 nm assignable to the MLCT (dpi-pi*) transitions. A red shifting of the dpi-pi* MLCT transition is observed on going from the Ru(II) to the Os(II) complex as expected from the high-lying dpi Os orbitals. These complexes exhibit ligand-sensitized emission at 732 and 736 nm, respectively, upon light excitation onto their MLCT band through excitation of higher energy LC bands at room temperature. The MLCT transitions and the emission maxima of 1 and 2 are substantially red-shifted compared to that of [Ru(bpy)3](PF6)2 and [Os(bpy)3](PF6)2. The emission of both the complexes in the presence of acid is completely quenched indicating that the emission is not due to the protonation of the coordinated ligands. Our results indicate the occurrence of intramolecular energy transfer from the ligand to the metal center. Both the complexes undergo quasi-reversible metal-centered oxidation, and the E1/2 values for the M(II)/M(III) redox couples (0.94 and 0.50 V versus Ag/Ag+ for 1 and 2, respectively) are cathodically shifted with respect to that of [Ru(bpy)3](PF6)2 and [Os(bpy)3](PF6)2 (E1/2 = 1.28 and 1.09 V versus Ag/Ag+, respectively). The tris(homoleptic) Ru(II) and Os(II) complexes 1 and 2 could be used to construct polynuclear complexes by using the modular synthetic approach in coordination compounds by exploiting the coordinating ability of the pyridine substituent. Furthermore, these complexes offer the possibility of studying the influence of electron-withdrawing and electron-donating substituents on the photophysical properties of Ru(II) and Os(II) polypyridine complexes.  相似文献   

2.
Two new dyads have been synthesized in which terminal Ru(II) and Os(II) polypyridine complexes are separated by sterically constrained spiro bridges. The photophysical properties of the corresponding mononuclear complexes indicate the importance of the decay of the lowest-energy triplet states localized on the metallo fragments through the higher-energy metal-centered excited states. This effect is minimized at 77 K, where triplet lifetimes are relatively long, and for the Os(II)-based systems relative to their Ru(II)-based counterparts. Intramolecular triplet energy transfer takes place from the Ru(II)-based fragment to the appended Os(II)-based unit, the rate constant being dependent on the molecular structure and on temperature. In all cases, the experimental rate constant matches surprisingly well with the rate constant calculated for F?rster-type dipole-dipole energy transfer. As such, the disparate rates shown by the two compounds can be attributed to stereochemical factors. It is further concluded that the spiro bridging unit does not favor through-bond electron exchange interactions, a situation confirmed by cyclic voltammetry.  相似文献   

3.
A general and versatile method for the site-specific incorporation of polypyridine Ru(II) and Os(II) complexes into DNA oligonucleotides using solid-phase phosphoramidite chemistry is reported. Novel nucleosides containing a [(bpy)(2)M(3-ethynyl-1,10-phenanthroline)](2+) (M = Ru, Os) metal center covalently attached to the 5-position in 2'-deoxyuridine are synthesized, and their electrochemical as well as photophysical properties are studied. The Ru(II) nucleoside exhibits a rather long-lived excited state in phosphate buffer pH 7.0 (tau = 1.08 micros) associated with a relatively high emission quantum efficiency (phi = 0.051). The solvent dependence of the absorption and emission spectra is consistent with an emissive MLCT state where charge localization takes place on the extended heterocycle-linked phenanthroline. In contrast, the Os(II)-containing nucleoside is quite nonemissive in aqueous environment (tau = 0.027 micros, phi = 1 x 10(-4)). The metal-containing nucleosides are converted into their phosphoramidites and are utilized for the high-yield preparation of modified oligonucleotides. The novel oligonucleotides, characterized by absorption and emission spectroscopy, enzymatic digestion, and electrophoresis, form stable duplexes. Circular dichroism spectra confirm that the global conformation of the double helix is not altered by the presence of these polypyridyl complexes in the major groove. Metal-containing phosphoramidites with predetermined absolute configuration at the octahedral coordination center are synthesized and utilized for the synthesis of diasteromerically pure metal-containing DNA oligonucleotides. Emission spectroscopy suggests a higher protection of the Delta metal center from the bulk solvent and better accommodation within the major groove.  相似文献   

4.
Five new tetrametallic supramolecules of the motif [{(TL)(2)M(dpp)}(2)Ru(BL)PtCl(2)](6+) and three new trimetallic light absorbers [{(TL)(2)M(dpp)}(2)Ru(BL)](6+) (TL = bpy = 2,2'-bipyridine or phen = 1,10-phenanthroline; M = Ru(II) or Os(II); BL = dpp = 2,3-bis(2-pyridyl)pyrazine, dpq = 2,3-bis(2-pyridyl)quinoxaline, or bpm = 2,2'-bipyrimidine) were synthesized and their redox, spectroscopic, and photophysical properties investigated. The tetrametallic complexes couple a Pt(II)-based reactive metal center to Ru and/or Os light absorbers through two different polyazine BL to provide structural diversity and interesting resultant properties. The redox potential of the M(II/III) couple is modulated by M variation, with the terminal Ru(II/III) occurring at 1.58-1.61 V and terminal Os(II/III) couples at 1.07-1.18 V versus Ag/AgCl. [{(TL)(2)M(dpp)}(2)Ru(BL)](PF(6))(6) display terminal M(dπ)-based highest occupied molecular orbitals (HOMOs) with the dpp(π*)-based lowest unoccupied molecular orbital (LUMO) energy relatively unaffected by the nature of BL. The coupling of Pt to the BL results in orbital inversion with localization of the LUMO on the remote BL in the tetrametallic complexes, providing a lowest energy charge separated (CS) state with an oxidized terminal Ru or Os and spatially separated reduced BL. The complexes [{(TL)(2)M(dpp)}(2)Ru(BL)](6+) and [{(TL)(2)M(dpp)}(2)Ru(BL)PtCl(2)](6+) efficiently absorb light throughout the UV and visible regions with intense metal-to-ligand charge transfer (MLCT) transitions in the visible at about 540 nm (M = Ru) and 560 nm (M = Os) (ε ≈ 33,000-42,000 M(-1) cm(-1)) and direct excitation to the spin-forbidden (3)MLCT excited state in the Os complexes about 720 nm. All the trimetallic and tetrametallic Ru-based supramolecular systems emit from the terminal Ru(dπ)→dpp(π*) (3)MLCT state, λ(max)(em) ≈ 750 nm. The tetrametallic systems display complex excited state dynamics with quenching of the (3)MLCT emission at room temperature to populate the lowest-lying (3)CS state population of the emissive (3)MLCT state.  相似文献   

5.
A series of soluble metal-organic polymers that contain Ru(II)- and Os(II)-polypyridine complexes interspersed within a pi-conjugated poly(3-octylthiophene) backbone are prepared. Detailed electrochemical and photophysical studies are carried out on the polymers and two model complexes to determine the extent that the metal-polypyridine units interact with the pi-conjugated system. The results indicate that there is a strong electronic interaction between the metal-based chromophores and the pi-conjugated organic segments, and consequently the photophysical properties are not simply based on the sum of the properties of the individual components. In the Ru(II) polymers, the metal-to-ligand charge-transfer (MLCT) excited state is slightly higher in energy than the 3 pi,pi* state of the poly(3-octylthiophene) backbone. This state ordering results in a material that displays only a weak MLCT luminescence and a long-lived transient absorption spectrum that is dominated by the 3 pi,pi* state. In the Os(II) polymer the MLCT state is lower in energy than the polythiophene-based 3 pi,pi* state and the "unperturbed" MLCT emission is observed. Finally, all of the metal-organic polymers undergo photoinduced bimolecular electron-transfer (ET) reactions with the oxidative quencher dimethyl viologen. Transient absorption spectroscopy reveals that photoinduced ET to dimethyl viologen produces the oxidized polymers, and in most cases, the transient spectra are dominated by features characteristic of a poly(3-octylthiophene) polaron.  相似文献   

6.
Hsu FC  Tung YL  Chi Y  Hsu CC  Cheng YM  Ho ML  Chou PT  Peng SM  Carty AJ 《Inorganic chemistry》2006,45(25):10188-10196
Triosmium cluster complexes [Os3(CO)8(fppz)2] (2a) and [Os3(CO)8(fptz)2] (2b) bearing two 2-pyridyl azolate ligands were synthesized in an attempt to establish the reaction mechanism that gives rise to the blue-emitting phosphorescent complexes [Os(CO)2(fppz)2] (1a) and [Os(CO)2(fptz)2] (1b) [(fppz)H = 3-(trifluoromethyl)-5-(2-pyridyl)pyrazole; (fptz)H = 3-(trifluoromethyl)-5-(2-pyridyl)triazole]. X-ray structural analysis of 2b showed an open triangular metal framework incorporating multisite-coordinated 2-pyridyltriazolate ligands. Treatment of 2 with the respective 2-pyridylazolate ligand led to the formation of blue-emitting complex 1b, confirming their intermediacy, while the reaction of 2b with phosphine ligand PPh2Me afforded two hitherto novel hydride complexes 3 and 4, for which the reversible interconversion was clearly established at higher temperatures (> 180 degrees C). The single-crystal X-ray diffraction analyses of 3 and 4 confirmed their monometallic and isomeric nature, together with the coordination of two phosphine ligands located in the trans-disposition and one CO and one hydride located opposite to the pyridyl triazolate chelate. Subtle differences in photophysical properties were examined for isomers 3 and 4 on the basis of steady state absorption and emission, the relaxation dynamics, and temperature-dependent luminescent studies. The results, in combination with time-dependent density function theory (TDDFT) calculations, provide fundamental insights into the future design and preparation of highly efficient phosphorescent emitters.  相似文献   

7.
Homo- and heteroleptic bis-tridentate ruthenium(II) and osmium(II) complexes of compositions [(tpy-PhCH(3))Ru(tpy-HImzPh(3))](ClO(4))(2) (1), [(H(2)pbbzim)Ru(tpy-HImzPh(3))] (ClO(4))(2) (2) and [M(tpy-HImzPh(3))(2)](ClO(4))(2) [M = Ru(II) (3) and Os(II) (4)], where tpy-PhCH(3) = p-methylphenyl terpyridine, H(2)pbbzim = 2,6-bis(benzimidazole-2-yl)pyridine and tpy-HImzPh(3) = 4'-[4-(4,5-diphenyl-1H-imidazol-2-yl)-phenyl]-[2,2':6',2']terpyridine, have been synthesized and characterized by using standard analytical and spectroscopic techniques. These compounds were designed to increase the room temperature excited-state lifetimes of bisterpyridine-type ruthenium(II) and osmium(II) complexes. The X-ray crystal structures of two homoleptic complexes 3 and 4 have been determined and show that both the compounds crystallized in orthorhombic form with space group Fddd. The photophysical and redox properties of the complexes have been thoroughly investigated. All the complexes display moderately strong luminescence at room temperature with lifetimes in the range of 6-35 ns. The complexes are found to undergo one reversible oxidation in the positive potential window (0 to +1.6 V) and one irreversible and two successive quasi-reversible reductions in the negative potential window (0 to -2.0 V). The influence of solvents on the photophysical properties of the complexes has also been investigated in detail.  相似文献   

8.
The PF6- salt of the dinuclear [(bpy)2Ru(1)Os(bpy)2]4+ complex, where 1 is a phenylacetylene macrocycle which incorporates two 2,2'-bipyridine (bpy) chelating units in opposite sites of its shape-persistent structure, was prepared. In acetonitrile solution, the Ru- and Os-based units display their characteristic absorption spectra and electrochemical properties as in the parent homodinuclear compounds. The luminescence spectrum, however, shows that the emission band of the Ru(II) unit is almost completely quenched with concomitant sensitization of the emission of the Os(II) unit. Electronic energy transfer from the Ru(II) to the Os(II) unit takes place by two distinct processes (k(en) = 2.0x10(8) and 2.2x10(7) s(-1) at 298 K). Oxidation of the Os(II) unit of [(bpy)2Ru(1)Os(bpy)2]4+ by Ce(IV) or nitric acid leads quantitatively to the [(bpy)2Ru(II)(1)Os(III)(bpy)2]5+ complex which exhibits a bpy-to-Os(III) charge-transfer band at 720 nm (epsilon(max) = 250 M(-1) cm(-1)). Light excitation of the Ru(II) unit of [(bpy)2Ru(II)(1)Os(III)(bpy)2]5+ is followed by electron transfer from the Ru(II) to the Os(III) unit (k(el,f) = 1.6x10(8) and 2.7x10(7) s(-1)), resulting in the transient formation of the [(bpy)2Ru(III)(1)Os(II)(bpy)2]5+ complex. The latter species relaxes to the [(bpy)2Ru(II)(1)Os(III)(bpy)2]5+ one by back electron transfer (k(el,b) = 9.1x10(7) and 1.2x10(7) s(-1)). The biexponential decays of the [(bpy)2*Ru(II)(1)Os(II)(bpy)2]4+, [(bpy)2*Ru(II)(1)Os(III)(bpy)2]5+, and [(bpy)2Ru(III)(1)Os(II)(bpy)2]5+ species are related to the presence of two conformers, as expected because of the steric hindrance between hydrogen atoms of the pyridine and phenyl rings. Comparison of the results obtained with those previously reported for other Ru-Os polypyridine complexes shows that the macrocyclic ligand 1 is a relatively poor conducting bridge.  相似文献   

9.
《Comptes Rendus Chimie》2003,6(8-10):883-893
Dendrimers based on Ru(II) and Os(II) polypyridine complexes as building blocks and 2,3–dpp (2,3–dpp = 2,3–bis(2′–pyridyl)pyrazine) as bridging ligands are presented and their properties as light-harvesting antenna systems are illustrated. The dendrimers exhibit a huge absorption in the visible region and energy migration patterns whose direction and efficiency depend on the synthetically determined topography of the systems. New recent developments are also discussed, with particular regard towards ultrafast energy transfer processes and long-range electron transfer within the dendritic arrays. To cite this article: S. Serroni et al., C. R. Chimie 6 (2003).  相似文献   

10.
The photophysical behavior of novel bimetallic Ru(II) and Os(II) complexes having a bridging ligand consisting of two terpyridyl moieties covalently linked in the 4′ position through a distyrylbenzene bridge (tp vp vpt) is reported. The Ru(II) complex has a unique red emission with an excited state lifetime nearly 2000-times longer than the parent complex, [Ru(mpt)2](PF6)2 (mpt=4′-(methylphenyl)-2,2′,6′,2″-terpyridine). Combined spectral data suggest the presence of an emissive intra-ligand charge-transfer (ILCT) state lower in energy than the metal-to-ligand charge transfer (MLCT) state. The Os(II) complex exhibits red emission that is similar to that of the parent complex [Os(mpt)2](PF6)2. However, the excited state absorption spectrum reveals a unique transient absorption in the far red that suggests perturbation of the MLCT state by the ILCT state.  相似文献   

11.
Novel Ru(II) polypyridyl complexes possessing pyridylpyrazolyl tethers were synthesized. Reactions with various organometallic precursors readily afforded multinuclear complexes which possess a light-harvesting Ru(II) core and (pyridylpyrazolyl)metal fragments in high yields. Analysis of the photophysical properties of the obtained multinuclear complexes revealed that the complexes had similar absorption and emission characteristics; however, their emission quantum yields decreased in proportion to the number of metal fragments. The di- and trinuclear complexes were stable under donating solvent such as CH3CN.  相似文献   

12.
The Os(II) arene ethylenediamine (en) complexes [(eta(6)-biphenyl)Os(en)Cl][Z], Z = BPh(4) (4) and BF(4) (5), are inactive toward A2780 ovarian cancer cells despite 4 being isostructural with an active Ru(II) analogue, 4R. Hydrolysis of 5 occurred 40 times more slowly than 4R. The aqua adduct 5A has a low pK(a) (6.3) compared to that of [(eta(6)-biphenyl)Ru(en)(OH(2))](2+) (7.7) and is therefore largely in the hydroxo form at physiological pH. The rate and extent of reaction of 5 with 9-ethylguanine were also less than those of 4R. We replaced the neutral en ligand by anionic acetylacetonate (acac). The complexes [(eta(6)-arene)Os(acac)Cl], arene = biphenyl (6), benzene (7), and p-cymene (8), adopt piano-stool structures similar to those of the Ru(II) analogues and form weak dimers through intermolecular (arene)C-H...O(acac) H-bonds. Remarkably, these Os(II) acac complexes undergo rapid hydrolysis to produce not only the aqua adduct, [(eta(6)-arene)Os(acac)(OH(2))](+), but also the hydroxo-bridged dimer, [(eta(6)-arene)Os(mu(2)-OH)(3)Os(eta(6)-arene)](+). The pK(a) values for the aqua adducts 6A, 7A, and 8A (7.1, 7.3, and 7.6, respectively) are lower than that for [(eta(6)-p-cymene)Ru(acac)(OH(2))](+) (9.4). Complex 8A rapidly forms adducts with 9-ethylguanine and adenosine, but not with cytidine or thymidine. Despite their reactivity toward nucleobases, complexes 6-8 were inactive toward A549 lung cancer cells. This is attributable to rapid hydrolysis and formation of unreactive hydroxo-bridged dimers which, surprisingly, were the only species present in aqueous solution at biologically relevant concentrations. Hence, the choice of chelating ligand in Os(II) (and Ru(II)) arene complexes can have a dramatic effect on hydrolysis behavior and nucleobase binding and provides a means of tuning the reactivity and the potential for discovery of anticancer complexes.  相似文献   

13.
Cheng YM  Li EY  Lee GH  Chou PT  Lin SY  Shu CF  Hwang KC  Chen YL  Song YH  Chi Y 《Inorganic chemistry》2007,46(24):10276-10286
We present the strategic design and synthesis of Os(II) complexes bearing a single pyridyl azolate pi-chromophore with an aim to attain high efficiency blue phosphorescence by way of localized transition. It turns out that our proposal of localized excitation seems to work well upon anchoring a single pi-chromophore on the Os(II) complexes such that the control of MLCT versus pipi* (or even LLCT) transitions is more straightforward. Among the titled complexes, [Os(CO)3(tfa)(fppz)] (1) and [Os(CO)3(tfa)(fbtz)] (5) (tfa=trifluoroacetate, (fppz)H=3-(trifluoromethyl)-5-(2-pyridyl)pyrazole, and (fbtz)H=3-(trifluoromethyl)-5-(4-tert-butyl-2-pyridyl)-1,2,4-triazole) give the anticipated blue phosphorescence with efficiencies of 0.26 (lambdamax=460 nm) and 0.27 (lambdamax=450 nm), respectively. For their halide analogues [Os(CO)3(X)(fppz)] (2, X=Cl; 3, X=Br; 4, X=I) and phosphine-substituted isomeric derivatives [Os(tfa)(fppz)(PPh2Me)2(CO)] (6-8), the localization of the excitation energy seems to populate at certain vibrational modes with weak bonding strength and hence an associated shallow potential energy surface to induce a facile radiationless transition. Furthermore, their ancillary ligands play an important role in fine-tuning not only the energy gap but also the emission intensity, i.e., in manifesting the radiationless transition pathways. Our results clearly show that there is always a tradeoff upon varying the parameters in an aim to optimize the hue and efficiency of phosphorescence toward blue.  相似文献   

14.
The synthesis, spectroscopic, electrochemical and photophysical characterization of a series of dinuclear ruthenium(II) complexes of the type [(bpy)2Ru(NnN)2RuCl(bpy)2](PF6)3, where NnN = 4,4′‐bipyridyl (N0N), 1,2‐bis(4‐pyridyl)ethylene (NEN), 1,2‐bis(4‐pyridyl)ethane (N2N), and 4,4′‐trimethylenedipyridine (N3N) are reported. The photophysical and electrochemical properties are discussed with particular emphasis on the ability of the bridging ligands to support intercomponent interaction.  相似文献   

15.
The synthesis of a number of new 2,2′‐bipyridine ligands functionalized with bulky amino side groups is reported. Three homoleptic polypyridyl ruthenium (II) complexes, [Ru(L)3]2+ 2(PF6?), where L is 4,4′‐dioctylaminomethyl‐2,2′‐bipyridine (Ru4a), 4,4′‐didodecylaminomethyl‐2,2′‐bipyridine (Ru4b) and 4,4′‐dioctadodecylaminomethyl‐2,2′‐bipyridine (Ru4c), have been synthesized. These compounds were characterized and their photophysical properties examined. The electronic spectra of three complexes show pyridyl π → π* transitions in the UV region and metal‐to‐ligand charge transfer bands in the visible region. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

16.
The photophysical properties of nanoporous TiO(2) surfaces modified with two new Ru(II)-(bpt)-Ru(II) and Ru(II)-(bpt)-Os(II) polypyridyl complexes are reported. These dyads have been prepared by a two-step synthetic pathway. In the first step, [Ru(dcbpy)(2)Cl(2)], where dcbpy is 4,4'-dicarboxy-2,2-bipyridyl, was reacted with the bridging ligand 3,5-bis(pyridin-2-yl)-1,2,4-triazole (Hbpt) to yield the mononuclear precursor Na(3)[Ru(dcbpy)(2)(bpt)].3H(2)O. Subsequent reaction of this compound with either [Ru(bpy)(2)Cl(2)] or [Os(bpy)(2)Cl(2)] yields the Ru(II)-Ru(II) and Ru(II)-Os(II) dyads. Electrochemical data, together with time-resolved transient absorption spectroscopy and the investigation of the incident-photon-to-current-efficiency (IPCE), have been used to obtain a detailed picture of the photoinduced charge injection properties of these dyads. These measurements indicate that for the heterosupramolecular triad based on Ru(II)-(bpt)-Ru(II), the final product species obtained upon charge injection is TiO(2)(e)-Ru(II)Ru(III). For the mixed metal Ru(II)-(bpt)-Os(II) dyad, both metal centers inject efficiently into the semiconductor surface and as a result TiO(2)(e)-Ru(II)Os(III) is obtained as a single charge-separated product.  相似文献   

17.
Coordination complexes have been used extensively as the photoactive component of artificial photosynthetic devices. While polynuclear arrays increase the probability of light absorption, the incorporation of the stereogenic Ru(2,2'-bipyridine)(3)(2+) motif gives rise to diastereomeric mixtures whereas the achiral Ru(2,2':6',2"-terpyridine)(2)(2+) motif creates stereopure polynuclear complexes. Thus, polynuclear arrays composed of ruthenium(II) complexes of tridentate ligands are the targets of choice for light-harvesting devices. As Ru(II) complexes of tridentate ligands have short excited state lifetimes at room temperature (r. t.), considerable effort has been focused on trying to increase their r. t. luminescence lifetime for practical applications. This tutorial review will report on the sophisticated synthetic strategies currently in use to enhance the room temperature photophysical properties of Ru(II) complexes of tridentate ligands.  相似文献   

18.
19.
A series of new mesomorphic platinum(II) complexes 1 – 4 bearing pyridyl pyrazolate chelates are reported herein. In this approach, pyridyl azolate ligands have been strategically functionalized with tris(alkoxy)phenyl groups with various alkyl chain lengths. As a result, they are ascribed to a class of luminescent metallomesogens that possess distinctive morphological properties, such as their intermolecular packing arrangement and their associated photophysical behavior. In CH2Cl2, independent of the applied concentration in the range 10?6–10?3 M , all PtII complexes exhibit bright phosphorescence centered at around 520 nm, which is characteristic for monomeric PtII complexes. In stark contrast, the single‐crystal X‐ray structure determination of [Pt(C4pz)2] ( 1 ) shows the formation of a dimeric aggregate with a notable Pt???Pt contact of 3.258 Å. Upon heating, all PtII complexes 1 – 4 melted to form columnar suprastructures, for which similar intracolumnar Pt???Pt distances of approx. 3.4–3.5 Å are observed within an exceptionally wide temperature range (>250 °C), according to the powder XRD data. Upon casting into a neat thin film at RT, the luminescence of 1 – 4 is dominated by a red emission that spans 630–660 nm, which originates from the one‐dimensional, chainlike structure with Pt–Pt interaction in the ground state. Taking complex 4 as a representative, the emission intensity and wavelength were significantly decreased and blueshifted, respectively, on heating from RT to 250 °C. Further heating to liquefy the sample alters the red emission back to the green phosphorescence of the monomer. The results highlight the pivotal role of tris(alkoxy)phenyl groups in the structural versus luminescence behavior of these PtII complexes.  相似文献   

20.
Two classes of synthetically useful bimetallic complexes of the form [(tpy)M(tpp)RuCl(3)](PF(6)) and [(tpy)M(tpp)Ru(tpp)](PF(6))(4) have been prepared and their spectroscopic and electrochemical properties investigated (tpy = 2,2':6',2"-terpyridine, tpp = 2,3,5,6-tetrakis(2-pyridyl)pyrazine, and M = Ru(II) or Os(II)). Synthetic methods have been developed for the stepwise construction of tpp-bridged systems using a building block approach. In all four complexes, the tpp that serves as the bridging ligand is the site of localization of the lowest unoccupied molecular orbital (LUMO). The nature of the HOMO (highest occupied molecular orbital) varies depending upon the components present. In the systems of the type [(tpy)M(tpp)RuCl(3)](PF(6)), the ruthenium metal coordinated to tpp and three chlorides is the easiest to oxidize and is the site of localization of the HOMO. In contrast, for the [(tpy)M(tpp)Ru(tpp)](PF(6))(4) systems, the HOMO is based on the metal, M, that is varied, either Ru or Os. This gives rise to systems which possess a lowest lying excited state that is always a metal-to-ligand charge transfer state involving tpp but can be tuned to involve Os or Ru metal centers in a variety of coordination environments. The synthetic variation of the components within this framework has allowed for understanding the spectroscopic and electrochemical properties. Bimetallic systems incorporating this tpp ligand have long-lived excited states at room temperature (lifetimes of ca. 100 ns). The bimetallic system [(tpy)Ru(tpp)Ru(tpp)](PF(6))(4) has a longer excited state lifetime than the monometallic system from which it was constructed, [(tpy)Ru(tpp)](PF(6))(2). Details of the spectroscopic and electrochemical studies are reported herein.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号