首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Growth-of-masking functions were obtained from 19 normal and 5 hearing-impaired listeners using a simultaneous-masking paradigm. When masker and probe frequency are identical, the slope of masking approximates 1.0 for both normal-hearing and impaired listeners. For masker frequencies less than or greater than probe frequency, the slopes for impaired listeners are shallower than those of normals. These findings are consistent with previously reported physiological data (single-fiber rate versus level and AP masking functions) for animals with induced cochlear lesions. Results are discussed in terms of a potential masking technique to estimate the growth of response in normal and impaired ears.  相似文献   

2.
Masking period patterns (MPPs) were measured in listeners with normal and impaired hearing using amplitude-modulated tonal maskers and short tonal probes. The frequency of the masker was either the same as the frequency of the probe (on-frequency masking) or was one octave below the frequency of the probe (off-frequency masking). In experiment 1, MPPs were measured for listeners with normal hearing using different masker levels. Carrier frequencies of 3 and 6 kHz were used for the masker. The probe had a frequency of 6 kHz. For all masker levels, the off-frequency MPPs exhibited deeper and longer valleys compared with the on-frequency MPPs. Hearing-impaired listeners were tested in experiment 2. For some hearing-impaired subjects, masker frequencies of 1.5 kHz and 3 kHz were paired with a probe frequency of 3 kHz. MPPs measured for listeners with hearing loss had similar shapes for on- and off-frequency maskers. It was hypothesized that the shapes of MPPs reflect nonlinear processing at the level of the basilar membrane in normal hearing and more linear processing in impaired hearing. A model assuming different cochlear gains for normal versus impaired hearing and similar parameters of the temporal integrator for both groups of listeners successfully predicted the MPPs.  相似文献   

3.
Decrement in ABR wave V amplitude was measured in the presence of simultaneous tonal maskers. Probe stimuli were 1.0, 4.0, and 8.0-kHz third-octave-filtered clicks. Adults and 3-month-old infants served as subjects. The resultant amplitude-decrement functions for each tonal masker were fit with regression lines. The sound pressure level (SPL) required to reduce wave V to 50% of the unmasked probe amplitude was plotted for each masker to develop tuning curves. The tuning curves were quantified by calculations of tip-to-tail difference, Q 10, and SPL at maximum masker frequency (MMF). Tuning curves for adult and infant subjects were similar for the 1.0-kHz probe. For the high-frequency probes (4.0 and 8.0 kHz), smaller tip-to-tail differences and lower Q 10 values were observed for the infant subjects. Ranges of MMF level were similar across adult and infant subjects. For the 8.0-kHz probe, tuning curves from infant subjects consistently showed maximum masker frequencies which were lower than the probe.  相似文献   

4.
Forward- and simultaneous-masked thresholds were measured at 0.5 and 2.0 kHz in bandpass maskers as a function of masker bandwidth and in a broadband masker with the goal of estimating psychophysical suppression. Suppression was operationally defined in two ways: (1) as a change in forward-masked threshold as a function of masker bandwidth, and (2) as a change in effective masker level with increased masker bandwidth, taking into account the nonlinear growth of forward masking. Subjects were younger adults with normal hearing and older adults with cochlear hearing loss. Thresholds decreased as a function of masker bandwidth in forward masking, which was attributed to effects of suppression; thresholds remained constant or increased slightly with increasing masker bandwidth in simultaneous masking. For subjects with normal hearing, slightly larger estimates of suppression were obtained at 2.0 kHz rather than at 0.5 kHz. For hearing-impaired subjects, suppression was reduced in regions of hearing loss. The magnitude of suppression was strongly correlated with the absolute threshold at the signal frequency, but did not vary with thresholds at frequencies remote from the signal. The results suggest that measuring forward-masked thresholds in bandlimited and broadband maskers may be an efficient psychophysical method for estimating suppression.  相似文献   

5.
The potential for interactions between steady-state evoked responses to simultaneous auditory stimuli was investigated in two bottlenose dolphins (Tursiops truncatus). Three experiments were conducted using either a probe stimulus (probe condition) or a probe in the presence of a masker (probe-plus-masker condition). In the first experiment, the probe and masker were sinusoidal amplitude-modulated (SAM) tones. Probe and masker frequencies and masker level were manipulated to provide variable masking conditions. Probe frequencies were 31.7, 63.5, 100.8, and 127.0 kHz. The second experiment was identical to the first except only the 63.5 kHz probe was used and maskers were pure tones. For the third experiment, thresholds were measured for the probe and probe-plus-masker conditions using two techniques, one based on the lowest detectable response and the other based on a regression analysis. Results demonstrated localized masking effects where lower frequency maskers suppressed higher frequency probes and higher amplitude maskers produced a greater masking effect. The pattern of pure tone masking was nearly identical to SAM tone masking. The two threshold estimates were similar in low masking conditions, but in high masking conditions the lowest detectable response tended to overestimate thresholds while the regression-based analysis tended to underestimate thresholds.  相似文献   

6.
Psychophysical tuning curves measured in simultaneous and forward masking   总被引:4,自引:0,他引:4  
The level of a masker necessary to mask a probe fixed in frequency and level was determined as a function of masker frequency using a two-interval forced-choice technique. Both simultaneous- and forward- masking techniques were used. Parameters investigated include the level of the probe tone and the frequency of the probe tone. The general form of the psychophysical tuning curves obtained in this way is quite similar to that of single-neurone tuning curves, when low-level probe tones are used. However, the curves obtained to forward masking generally show sharper tips and steeper slopes than those found in simultaneous masking, and they are also generally sharper than neurophysiological tuning curves. For frequencies of the masker close to that of the probe a simultaneous masker was sometimes less effective than a forward masker. The results are discussed in relation to possible lateral suppression effects in simultaneous masking, and in relation to the observer's use of pitch cues in forward masking. It is concluded that neither the simultaneous-masking curves nor the forward-masking curves are likely to give an accurate representation of human neural tuning curves.  相似文献   

7.
Previous action potential (AP) tuning curve methods have used a reduction in amplitude of the probe-elicited AP as an indication of tone-induced masking. The reduction criterion used in different studies has varied from 25% to 100%. For low level probe stimuli, which elicit a low-amplitude AP, this is a sensitive indicator. In contrast, for high-amplitude AP responses elicited by high-level stimuli, the required reduction in absolute terms is large, making it an insensitive indicator. AP tuning curves have been recorded using a sensitive method for detecting masker/probe interaction with a fixed criterion, unrelated to the unmasked AP amplitude. For each masking condition, a derived response was obtained by digitally subtracting the tone-masked AP waveform from the unmasked response. Derived responses are generated if there are ANY changes in the AP waveform induced by the masker, including amplitude changes, latency changes, or even changes in AP morphology not necessarily associated with the major peaks. A fixed criterion (10 microV) of tone-derived (TD) response was used as an indication of interaction of the responses to the masker and probe. Tuning curves generated by this method were compared with those generated by conventional amplitude reduction (AR) methods. TD tuning curves show different characteristics, especially with respect to increasing probe levels. They appear to give a good representation of the array of afferent fibers responding to a probe stimulus. In addition, frequency regions making minor contributions to the AP are better represented in TD tuning curves.  相似文献   

8.
Psychophysical forward-masked thresholds were estimated for 3- and 6-month-old infants and for adults. Listeners detected a repeated 1000-Hz probe, with 16-ms rise time, no steady-state duration, and 16-ms fall time. Unmasked thresholds were determined for one group of listeners who were trained to respond when they heard the probe but not at other times. In the masking conditions, each tone burst was preceded by a 100-ms broadband noise masker at 65 dB SPL. Listeners were trained to respond when they heard the probe and masker, but not when they heard the masker alone. The masker-probe interval, delta t, was either 5, 10, 25, or 200 ms. Four groups of subjects listened in the masked conditions, each at one value of delta t. Each listener attempted to complete a block of 32 trials including four probe levels chosen to span the range of expected thresholds. "Group" thresholds, based on average psychometric functions, as well as thresholds for individual listeners, were estimated. Both group and individual thresholds declined with delta t, as expected, for both infants and adults. Infants' masked thresholds were higher than those of adults, and comparison of masked to unmasked thresholds suggested that infants demonstrate more forward masking than adults, particularly at short delta t. Forward masking appeared to have greater effects on 3-month-olds' detection than on either 6-month-olds' or adults'. Compared to adults, 6-month-olds demonstrated more forward masking only for delta t of 5 ms. Thus, susceptibility to forward masking may be nearly mature by 6 months of age.  相似文献   

9.
Stimulus frequency otoacoustic emissions (SFOAEs) measured using a suppressor tone in human ears are analogous to two-tone suppression responses measured mechanically and neurally in mammalian cochleae. SFOAE suppression was measured in 24 normal-hearing adults at octave frequencies (f(p)=0.5-8.0 kHz) over a 40 dB range of probe levels (L(p)). Suppressor frequencies (f(s)) ranged from -2.0 to 0.7 octaves re: f(p), and suppressor levels ranged from just detectable suppression to full suppression. The lowest suppression thresholds occurred for "best" f(s) slightly higher than f(p). SFOAE growth of suppression (GOS) had slopes close to one at frequencies much lower than best f(s), and shallow slopes near best f(s), which indicated compressive growth close to 0.3 dBdB. Suppression tuning curves constructed from GOS functions were well defined at 1, 2, and 4 kHz, but less so at 0.5 and 8.0 kHz. Tuning was sharper at lower L(p) with an equivalent rectangular bandwidth similar to that reported behaviorally for simultaneous masking. The tip-to-tail difference assessed cochlear gain, increasing with decreasing L(p) and increasing f(p) at the lowest L(p) from 32 to 45 dB for f(p) from 1 to 4 kHz. SFOAE suppression provides a noninvasive measure of the saturating nonlinearities associated with cochlear amplification on the basilar membrane.  相似文献   

10.
Forward-masking growth functions for on-frequency (6-kHz) and off-frequency (3-kHz) sinusoidal maskers were measured in quiet and in a high-pass noise just above the 6-kHz probe frequency. The data show that estimates of response-growth rates obtained from those functions in quiet, which have been used to infer cochlear compression, are strongly dependent on the spread of probe excitation toward higher frequency regions. Therefore, an alternative procedure for measuring response-growth rates was proposed, one that employs a fixed low-level probe and avoids level-dependent spread of probe excitation. Fixed-probe-level temporal masking curves (TMCs) were obtained from normal-hearing listeners at a test frequency of 1 kHz, where the short 1-kHz probe was fixed in level at about 10 dB SL. The level of the preceding forward masker was adjusted to obtain masked threshold as a function of the time delay between masker and probe. The TMCs were obtained for an on-frequency masker (1 kHz) and for other maskers with frequencies both below and above the probe frequency. From these measurements, input/output response-growth curves were derived for individual ears. Response-growth slopes varied from >1.0 at low masker levels to <0.2 at mid masker levels. In three subjects, response growth increased again at high masker levels (>80 dB SPL). For the fixed-level probe, the TMC slopes changed very little in the presence of a high-pass noise masking upward spread of probe excitation. A greater effect on the TMCs was observed when a high-frequency cueing tone was used with the masking tone. In both cases, however, the net effects on the estimated rate of response growth were minimal.  相似文献   

11.
In their recent article "Offset AP masker tuning curve and the FFT of the stimulus" [J. Acoust. Soc. Am. 84, 1354-1362 (1988)], Henry and Lewis demonstrated that the tuning curve obtained by the simultaneous masking of the whole nerve action potential (AP) could have two tips when the AP is generated at the offset of the envelope of a high-level probe. The primary tip falls below the probe frequency, whereas the secondary tip falls above the probe frequency. Curves obtained for the onset response with either forward or simultaneous masking did not show the secondary peak, nor did curves obtained for the offset response with forward masking. Henry and Lewis discussed various reasons for the secondary tip, but came to no conclusion as to the underlying mechanisms. Here, it is reasoned that the secondary tip of the offset curve can be simply explained by the generation within the cochlea of intermodulation distortion (IMD), which acts as a forward masker to the offset response. The IMD is dominated by the cubic component (2f1-f2) and arises from the interaction of the probe tone and the simultaneous masker. Finally, it is reasoned that the lower sideband of the frequency splatter present at probe offset is the primary stimulus for the evoked neural response under probe offset conditions. Thus the offset curve will always have a primary tip that is lower in frequency than that of the respective onset curve. These hypotheses are supported by single-fiber data.  相似文献   

12.
Auditory processing appears to include a series of domain-specific filtering operations that include tuning in the audio-frequency domain, followed by tuning in the temporal modulation domain, and perhaps tuning in the spectral modulation domain. To explore the possibility of tuning in the spectral modulation domain, a masking experiment was designed to measure masking patterns in the spectral modulation domain. Spectral modulation transfer functions (SMTFs) were measured for modulation frequencies from 0.25 to 14 cycles/octave superimposed on noise carriers either one octave (800-1600 Hz, 6400-12,800 Hz) or six octaves wide (200-12,800 Hz). The resulting SMTFs showed maximum sensitivity to modulation between 1 and 3 cycles/octave with reduced sensitivity above and below this region. Masked spectral modulation detection thresholds were measured for masker modulation frequencies of 1, 3, and 5 cycles/octave with a fixed modulation depth of 15 dB. The masking patterns obtained for each masker frequency and carrier band revealed tuning (maximum masking) near the masker frequency, which is consistent with the theory that spectral envelope perception is governed by a series of spectral modulation channels tuned to different spectral modulation frequencies.  相似文献   

13.
Psychoacoustical tuning curves and interaural pitch matches were measured in a listener with a unilateral, moderately severe hearing loss of primarily cochlear origin below 2 kHz. The psychoacoustical tuning curves, measured in a simultaneous-masking paradigm, were obtained at 1 kHz for probe levels of 4.5-, 7-, and 13-dB SL in the impaired ear, and 7-dB SL in the impaired ear, and 7-dB SL in the normal ear. Results show that as the level of the probe increased from 4.5- to 13-dB SL in the impaired ear, (1) the frequency location of the tip of the tuning curve decreased from approximately 2.85 to 2.20 kHz and (2) the lowest level of the masker required to just mask the probe increased from 49- to 83-dB SPL. The tuning curve in the normal ear was comparable to data from other normal listeners. The interaural pitch matches were measured from 0.5 to 6 kHz at 10-dB SL in the impaired ear and approximately 15- to 20-dB SL in the normal ear. Results show reasonable identity matches (e.g., a 500-Hz tone in the impaired ear was matched close to a 500-Hz tone in the normal ear), although variability was significantly greater for pitch matches below 2 kHz. The results are discussed in terms of their implications for models of pitch perception.  相似文献   

14.
Forward-masked psychophysical tuning curves were obtained using a fixed, low-level signal at a frequency of 4 kHz, and masker frequencies of 2.0, 2.5, 3.0, 3.5, 3.75, 4.0, 4.25, 4.5, 4.75, 5.0, and 5.5 kHz, at masker-signal gaps of 20, 30, 40, 60, 80, and 100 ms. An adaptive two-interval, two alternative forced-choice (21-2AFC) procedure was used to obtain the masker level at threshold. This procedure was repeated with the addition of a 4.75-kHz suppressor at 50 or 60 dB SPL, gated with the masker. Tuning curves were broader, and estimates of compression and gain from derived input/output functions were decreased in the presence of a suppressor as compared to the no-suppressor condition. The results are consistent with physiological results, which show that suppression leads to a broadening of tuning curves and a partial linearization of the midlevel portion of the basilar-membrane input/output function.  相似文献   

15.
These experiments were designed to test the idea that nonlinearities in the auditory system can introduce a distortion component into the internal representation of the envelope of a sound, and to estimate the phase of the hypothetical distortion component. In experiment 1, a two-alternative forced-choice (2AFC) task with feedback was used to measure psychometric functions for detecting 5-Hz probe modulation of a 4-kHz sinusoidal carrier in the presence of a masker modulator with components at 50 and 55 Hz (m=0.3 for each component). Performance was measured as a function of the relative phase, delta[symbol see text], of the probe relative to the "venelope" (envelope of the envelope) of the masker. Performance was poorest for delta[symbol see text]= 135 degrees. In experiment 2, delta[symbol see text] was fixed at 135 degrees, m was set to 0.48 for each masker component, and psychometric functions for detecting probe modulation were measured using a 2AFC task without feedback. For small probe modulation depths (m approximately 0.03), the detectability index, d', was consistently negative, consistent with the existence of a weak distortion product which can "cancel" the probe modulation. The distortion component for the conditions of the experiment was estimated to have a phase of about -25 degrees relative to the venelope.  相似文献   

16.
Two experiments are described in which frequency selectivity was estimated, in simultaneous and forward masking, for each ear of subjects with moderate (25-60 dB HL) unilateral cochlear hearing losses. In both experiments, the signal level was fixed for a given ear and type of masking (simultaneous or forward), and the masker level was varied to determine threshold, using an adaptive, two-alternative forced-choice procedure. In experiment I, the masker was a noise with a spectral notch centered at the signal frequency (either 1.0 or 1.5 kHz); threshold was determined as a function of notch width. Signal levels were chosen so that the noise level required at threshold for a notch width of zero was similar for the normal and impaired ear of each subject in both simultaneous and forward masking. The function relating threshold to notch width had a steeper slope for the normal ear than for the impaired ear of each subject. For the normal ears, these functions were steeper in forward masking than in simultaneous masking. This difference was interpreted as resulting from suppression. For the impaired ears, significant differences in the same direction were observed for three of the five subjects, but the differences were smaller. In experiment II, psychophysical tuning curves (PTCs) were determined in the presence of a fixed notched noise centered at the signal frequency (1.0 kHz). For the normal ears, the PTCs were sharper in forward masking than in simultaneous masking. For the impaired ears, the PTCs were similar in simultaneous and forward masking, but those in forward masking tended to be sharper at masker frequencies far removed from the signal frequency. Overall, the results suggest that suppression is reduced, but not completely absent in cases of moderate cochlear hearing loss.  相似文献   

17.
Whole nerve action potential (AP) and single auditory-nerve fiber thresholds were measured in chinchillas exposed to noise. The exposure stimulus was a 500-Hz octave band of noise presented at 95 dB SPL for 15 min/h, for 4 or 40 days. The AP thresholds were elevated by about 40 dB on day 4, between 0.5 kHz and approximately 8 kHz. On day 40, AP thresholds at the same frequencies were lower by 10-25 dB, even though the noise exposure had continued. Single fiber threshold tuning curves exhibited pathologies similar to those previously observed following noise exposure. Tuning curves measured on day 40 were more normal in appearance. These results confirm that similar recovery of threshold observed in psychophysical experiments [Clark et al., J. Acoust. Soc. Am. 82, 1253-1264 (1987)] can be understood in terms of the sensitivity of the peripheral auditory system.  相似文献   

18.
The forward-masked threshold for a 10-ms, 1-kHz sinusoidal signal was measured as a function of the level of a narrow-band (60-Hz wide) noise masker at five masker frequencies (0.6, 0.8, 1.0, 1.15, and 1.25 kHz) using both a fixed-masker procedure (determine the threshold level of the signal for a fixed level of the masker) and the converse procedure (determine the masker level necessary to just mask a given signal). A common growth-of-masking function describes the results of both procedures for a given masker frequency; i.e., an identical masker and signal lead to identical performance regardless of which is the dependent variable. The growth-of-masking functions for different masker frequencies show varying degrees of nonlinearity. The nonlinearity of the growth-of-masking functions underlies the discrepancies which arise between masking-pattern and tuning-curve data. These discrepancies do not arise because performance somehow depends upon whether the masker or signal is the dependent variable.  相似文献   

19.
This study examined the time course of adaptation and recovery from adaptation of single auditory-nerve fiber responses. The conditions studied were: (1) adaptation response using low level, 800 Hz or characteristic frequency (CF) stimuli; and (2) onset recovery and whole tone response recovery of a probe tone following a masker of equal frequency with variable silent intervals between the masker offset and probe onset. Single unit responses to 290 ms long, 800 Hz or CF tones presented at 10-30 dB SL were recorded from the auditory nerve of the cat. Adaptation properties were determined and fit to the equation: A(tp) = Yre(-tp/tau Rr) + Yse(-tp/tau Rs) + Ass. Recovery from adaptation was determined by recording the response of a probe tone following a 100-ms masker tone equal in frequency to the probe, and with amplitudes ranging from 20- to 30-dB relative to the probe amplitude. Both the onset recovery and the whole tone recovery were determined for the single unit responses. The onset data were analyzed and fit to either the equation: A (delta xt,tp) = Ass - Yre(-tp/tau Rr) - Yse(- delta t/tau Rs) or A (delta t,tp) = Ass - Yre(- delta t/tau R). The whole tone response showed two distinctive time patterns that could be fit to either an adaptation equation or to the two-time-constant recovery equation, depending on the relative amplitude of the masker and the length of the silent interval between masker offset and probe onset. The results of this study indicate that single fiber time constants are comparable to those measured in previous studies using the auditory-nerve neurophonic (ANN). Likewise, the pattern of recovery of the whole tone response for single fiber responses is comparable to the ANN. Possible sites and mechanisms for adaptation and recovery from adaptation taking into account recent data from electrical stimulation studies and receptor channel morphology and kinetics are discussed.  相似文献   

20.
The thresholds of masking of short high-frequency pulses with either different durations (1.25–25 ms) and similar central frequency or different central frequencies (3.6–4.4 kHz) but similar durations were measured to reveal manifestations of the properties of peripheral encoding in auditory perception. Noises with a spiked amplitude spectrum structure were used as maskers. The central frequency and the frequency band of a masker were 4 and 1 kHz, respectively. The central frequencies of a stimulus and a masker being equal, the noise the central frequency of which coincided with the frequency corresponding to a dip of an indented spectrum was called an off(rip)-frequency masker. Owing to the off(rip)-masker, stimuli-induced masking thresholds were formed taking into account excitation in a narrow region of a basila membrane and auditory nerve fibers with characteristic frequencies from a narrow range. High-frequency pulses with an envelope in the form of the Gaussian function and sinusoidal filling were used as stimuli. At masker levels of 30 dB above the auditory threshold, frequencies of off(rip)-masker spectra spikes of 500–2000 Hz, and a central stimulus frequency of 4 kHz, the thresholds of tonal stimuli (25 ms in duration) masking in two out of three probationers were higher than the thresholds of masking of compact stimuli (1.25 ms in duration). In the third probationer, on the contrary, the thresholds of tonal stimuli masking were lower than the thresholds of compact stimuli masking. At masker levels of 50 dB, individual threshold differences disappeared. The obtained results were interpreted in the context of implementation of different methods of auditory encoding of the intensity. The methods were based on either the average frequency of auditory nerve pulsations or the number of fibers participating in the response. The interpretation was also carried out in the context of revealing manifestations of nonlinear properties of basila membrane displacements in auditory thresholds. The fact that the dependence of detection thresholds of compact stimuli on their central frequency in one of the two probationers did not reveal the minimum in case of coincidence of off(rip)-masker and stimulus frequencies pointed to the presence of an auditory “problem zone” that was likely to be localized at the periphery of the auditory system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号