首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 512 毫秒
1.
Thermal decomposition and structural characterization of three human kidney stones (KS1–KS3) extracted from patients of Eastern Bohemia have been carried out using X-ray powder diffraction systems (XRD), scanning electron microscope with energy dispersive X-ray micro analyser (SEM-EDX) and differential thermal analysis (DTA). The samples KS1 and KS2 solely consisted of calcium oxalate monohydrate (a.k.a. whewellite, CaC2O4·H2O). The third sample, KS3, was formed from calcium oxalate dihydrate (weddellite, CaC2O4·2H2O), calcium oxalate monohydrate, and hydroxyapatite (HA, Ca10(PO4)6(OH)2). Thermal measurements were carried out in the range between room temperature and 1,230 °C. XRD analysis was utilized to investigate the change of phases at 800 and 1,230 °C.  相似文献   

2.
Geometries and energies of isolated CaC2O4·H2O, CaC2O4, CaCO3, CaO, H2O, CO and CO2 were determined at the ab initio level using effective core potential valence basis sets of doublezeta quality, supplemented with polarization functions. The effects of electron correlation were taken into account at the second order Møller-Plesset level of theory. For CaC2O4·H2O, the correlation for the basis set superposition error was also included. Common routines were employed to evaluate entropies, heat capacities, as well as enthalpies and free enthalpies of formation of all entities. The enthalphies and free enthalpies of consecutive dehydration of CaC2O4·H2O, decarbonylation of CaC2O4 and decomposition of CaCO3 towards CaO and CO2 were determined on the basis of avialable data from the literature or those predicted thoretically. Assuming that upon all the above mentioned processes the system maintains equilibrium, the fractions reacted, enthalpy changes and differential dependencies of thesevs. temperature were derived and compared with experimental thermoanalytical data.  相似文献   

3.
Different hydrates of calcium oxalate have been electrodeposited by electrogeneration of acid at the anode from an EDTA-stabilized calcium nitrate bath containing dissolved oxalate ions. The deposition is controlled by varying the bath pH, temperature, and current density. Formation of metastable CaC2O4·2H2O is favored at high current densities at ambient temperature, whereas the thermodynamically stable CaC2O4·H2O is formed at elevated bath temperatures. Both the polymorphs show oriented growth with respect to the substrate normal under different deposition conditions.  相似文献   

4.
The deterioration of zinc, zinc—calcium and manganese phosphate coatings and oxalate coatings on steel on heating was investigated by conversion electron Mössbauer spectrometry. and the chemical change of the coatings was analysed on the basis of the thermal characteristics of Zn3(PO4)2·4H2O, Zn2Fe(PO4)4·4H2O, CaZn2(PO4)2·2H2O, Fe3(PO4)2·8H2O. (Mn, Fe)5H2(PO4)4·4H2O and FeC2O4·2H2O. The steel substrate beneath the coatings influenced the thermal decomposition and evaporation of coating materials under the various heating atmospheres. The heat resistance of these coatings and the state of the substrate were also investigated.  相似文献   

5.
The ZrO(NO3)2-H3PO4-CsF-H2O system was studied at 20°C along the section at a molar ratio of PO43−/Zr = 0.5 (which is of the greatest interest in the context of phase formation) at ZrO2 concentrations in the initial solutions of 2–14 wt % and molar ratios of CsF: Zr = 1−6. The following compounds were isolated for the first time: crystalline fluorophosphates CsZrF2PO4 · H2O, amorphous oxofluorophosphate Cs2Zr3O2F4(PO4)2 · 3H2O, and amorphous oxofluorophosphate nitrate CsZr3O1.25F4(PO4)2(NO3)0.5 · 4.5H2O. The compound Cs3Zr3O1.5F6(PO4)2 · 3H2O was also isolated, which forms in a crystalline or glassy form, depending on conditions. The formation of the following new compounds was established: Cs2Zr3O1.5F5(PO4)2 · 2H2O, Cs2Zr3F2(PO4)4 · 4.5H2O, and Zr3O4(PO4)1.33 · 6H2O, which crystallize only in a mixture with known phases. All the compounds were studied by X-ray powder diffraction, crystal-optical, thermal, and IR spectroscopic analyses.  相似文献   

6.
Abstract

The present work is related to an investigation of the chemistry of the phosphoric acid-thermal processing of apatite into a phosphate animal feed aupplement. Dried mixtures of H3PO4 with apatite concentrates of various mineral content and chemical composition as well as mixtures based on Ca(H2PO42)2 · H2O, Ca2P2O7 and Ca(PO3)2 were used. The investigation was carried out by chemical, thermal, chromatographic and X-ray diffraction methods.  相似文献   

7.
The phase formation in the system ZrO(NO3)2-H3PO4-CsF(HF)-H2O was studied at the molar ratio CsF/Zr = 1 along the sections PO 4 3? /Zr = 0.5 and 1.5 at a ZrO2 concentration in the initial solution of 2?C14 wt %. The following compounds were isolated: Cs5Zr4F21 · 3H2O, CsZr2(PO4)3 · 2HF · 2H2O, CsZrF2PO4 · H2O, CsZr2F6PO4 · 4H2O (for the first time), CsHZrF3PO4 (for the first time), Cs0.70ZrF(PO4)1.23 · nH2O, and CsHZr2F2(PO4)2.66 · nH2O. The compositions of CsZrF2PO4 · H2O, Cs0.70ZrF(PO4)1.23 · nH2O, and CsHZr2F2(PO4)2.66 · nH2O are conditional. All the compounds were characterized by crystal-optical, X-ray powder diffraction, thermal analyses, and IR spectroscopy. The formula CsHZrF3PO4 was established by energy-dispersive analysis with a LEO-1450 scanning electron microscope and an MS-46 CAMECA X-ray microanalyzer.  相似文献   

8.
The dehydration of Ca(H2PO4)2·H2O was examined with simultaneous DTA and TG. This dehydration permitted clearly the apparation of the following phases: Ca(H2PO4)2·0.5H2O, Ca(H2PO4)2, Ca3(HP2O7)2, Ca2HP3O10 et Ca(PO3)2. The reaction of Ca(H2PO4)2·H2O and CaSO4 was also examined with the same technics. It was found that the decomposition of CaSO4 takes place for relatively low temperature (between 600°C and 800°C).  相似文献   

9.
Nanocrystalline NH4ZrH(PO4)2·H2O was synthesized by solid-state reaction at low heat using ZrOCl2·8H2O and (NH4)2HPO4 as raw materials. X-ray powder diffraction analysis showed that NH4ZrH(PO4)2·H2O was a layered compound with an interlayer distance of 1.148 nm. The thermal decomposition of NH4ZrH(PO4)2·H2O experienced four steps, which involves the dehydration of the crystal water molecule, deamination, intramolecular dehydration of the protonated phosphate groups, and the formation of orthorhombic ZrP2O7. In the DTA curve, the three endothermic peaks and an exothermic peak, respectively, corresponding to the first three steps' mass losses of NH4ZrH(PO4)2·H2O and crystallization of ZrP2O7 were observed. Based on Flynn–Wall–Ozawa equation and Kissinger equation, the average values of the activation energies associated with the NH4ZrH(PO4)2·H2O thermal decomposition and crystallization of ZrP2O7 were determined to be 56.720 ± 13.1, 106.55 ± 6.28, 129.25 ± 4.32, and 521.90 kJ mol−1, respectively. Dehydration of the crystal water of NH4ZrH(PO4)2·H2O could be due to multi-step reaction mechanisms: deamination of NH4ZrH(PO4)2 and intramolecular dehydration of the protonated phosphate groups from Zr(HPO4)2 are simple reaction mechanisms.  相似文献   

10.
Four kinds of strontium borates were prepared and characterized by XRD, SEM, EDS, TG-DTA and Hammett titration method, and their catalytic activities were examined in the transesterification of glyceryl tributyrate with methanol for the first time. The separate effects of the molar ratio of methanol to oil, the reaction time, and reusability were investigated. In addition, the catalytic activities of Sr(OH)2 and SrCO3 were also examined for the comparison. The results showed that the basicity and catalytic activity of these catalysts were decreased as the following order: Sr(OH)2 > SrB2O4·4H2O > SrB6O10·5H2O > SrB2O4 > SrB6O10 > SrCO3, and the reusability decreases as the following order: anhydrous strontium borates (SrB2O4, SrB6O10) > hydrated strontium borates (SrB2O4·4H2O, SrB6O10·5H2O) > Sr(OH)2. The results indicate that the SrB2O4·4H2O with regular morphology, which was obtained at low temperature by a simple preparation method, might be as one kind of good potential alkaline earth salts catalyst for transesterification. Moreover, the possible reaction mechanism is proposed and analyzed.  相似文献   

11.
The phase formation in the system HfO(NO3)2-H3PO4-CsF(HF)-H2O was studied along the sections at the molar ratios PO 4 3? /Hf = 0.5, 1.5, and 2.0 and RbF:Hf = 1?C5, and also in the presence of HF at CsF: Hf = 1. The initial solutions contained 2?C24 wt % HfO2. The synthesis was performed at room temperature. The following substances were isolated: crystalline cesium fluorophosphate hafnates CsHf2F6PO4 · 4H2O, CsHfF2PO4 · 0.5H2O, and CsH2Hf2F2(PO4)3 · 2H2O; X-ray amorphous cesium fluorophosphate hafnate of the average composition Cs2Hf3O1.5F5(PO4)2 · 5H2O; and X-ray amorphous cesium fluorophosphate nitrate hafnate Cs5H4Hf3F7(PO4)3.66(NO3)3 · 5H2O. The compositions of the amorphous phases should be refined. Cesium fluorophosphate hafnates were obtained for the first time. The compounds were studied by crystal-optical, elemental, X-ray diffraction, IR spectroscopic, and electron microscopic analyses.  相似文献   

12.
From solutions containing 2–17 wt % TiO2 at the molar ratios M/Ti = 1–4, F/Ti = 2–4, and PO 4 3? /Ti = 0.5–10 under mild conditions, fluoro- and oxo(hydroxo) fluorophosphate titanates were isolated: crystalline M2TiF6 (M = K, Rb, Cs) and K2Ti2O2.5F2PO4 · 2H2O, and amorphous K3Ti4O(OH)F7(PO4)3 · 5H2O, Cs2Ti3O2F7PO4 · 6H2O, and CsTi3O3F4PO4 · 3H2O. In a mixture with M2TiF6 and KCl, phosphate-ion-containing crystalline phases of unidentified composition were detected. The phases were studied by elemental, crystal-optical, X-ray powder diffraction, thermal, IR spectroscopic, and electron microscopic analyses. Annealing fluorophosphate titanates gives a mixture of MTiOPO4 and TiO2. All the mentioned alkali metal fluorophosphates contain the tetrahedral ion PO 4 3? and titanium polyhedra with bonds Ti-F and Ti-O; some of them also contain bridging oxygen connecting titanium atoms: Ti-O-Ti; i.e., these substances are polymeric.  相似文献   

13.
Crystalline cesium fluorophosphatozirconates (CFPZs) CsZr2F6PO4 · 4H2O, CsZrF2PO4 · 0.5H2O, CsH2Zr2F2(PO4)3 · 2H2O, and amorphous Cs2Zr3OF6(PO4)2 · 3H2O were synthesized, and their thermal stability and luminescence ability were studied. The compositions of initial CsH2Zr2F2(PO4)3 · 2H2O and Cs2Zr3OF6(PO4)2 · 3H2O were refined. CsZr2O0.5F5PO4, CsHZr2F(PO4)3, CsZr2(PO4)3, and Cs2Zr3OF6(PO4)2 crystalline intermediates, which are comparable with BaSO4 and CaF2 luminophors in the context of their X-ray luminescence intensity, were recognized by thermal analysis and X-ray powder diffraction under heating.  相似文献   

14.
Phase formation in the ZrO(NO3)2-NaF(HF)-H3PO4-H2O system was studied at 20°C and 2.0–14.5 wt % ZrO2 in the initial solution along sections with molar ratios PO 4 3? /Zr = 0.5 and 1.5 and also in the presence of hydrogen fluoride at Na/Zr = 1 and PO 4 3? /Zr = 0.5, 1.0, and 1.5. Crystalline zirconium hydrophosphate Zr(HPO4)2 · H2O, fluorozirconates Na5Zr2F13 and Na7Zr6F31 · 12H2O, fluorophosphatozirconates NaH2Zr3F3(PO4)4 · 3H2O and NaZr2F6(PO4) · 4H2O, and amorphous NaZrO0.5F(PO4) · 4H2O (provisional composition) were separated at room temperature. NaH2Zr3F3(PO4)4 · 3H2O and NaZr2F6(PO4) · 4H2O were prepared for the first time and were studied by crystal-optical, elemental, and thermal analyses, X-ray powder diffraction, IR spectroscopy, scanning electron microscopy (SEM), and X-ray microanalysis. Na7Hf6F31 · 12H2O was found to exist in a mixture with the hydrophosphate.  相似文献   

15.
Caesium manganese hexahydrate phosphate, CsMn(H2O)6(PO4), was synthesized under hydrothermal conditions. Its crystal structure was determined from single‐crystal X‐ray diffraction data. The novel phase crystallizes in the hexagonal space group P63mc and represents the first manganese member in the struvite morphotropic series, AM(H2O)6(TO4). Its crystal structure is built from Mn(H2O)6 octahedra and PO4 tetrahedra linked into a framework via hydrogen bonding. The large Cs atoms are encapsulated in the framework cuboctahedral cavities. It is shown that the size of the A+ ionic radius within the morphotropic series AM(H2O)6(XO4) results is certain types of crystal structures and affects the values of the unit‐cell parameters. Structural relationships with Na(H2O)Mg(H2O)6(PO4) and the mineral hazenite, KNa(H2O)2Mg2(H2O)12(PO4)2, are discussed.  相似文献   

16.
The thermal stability of cesium fluorophosphatohafnates (crystalline CsHf2F2(HPO4)2PO4 · 2H2O, CsHfF2PO4 · 0.5H2O, CsHf2F6PO4 · 4H2O and X-ray amorphous Cs2Hf3O1.5F5(PO4)2 · 5H2O, Cs5H4Hf3F7(PO4)3.66(NO3)3 · 5H2O) was determined. The weight ratios Cs+/Hf and PO 4 3? /ZrHf in CsHf2F2(HPO4)2PO4 · 2H2O were confirmed by identifying the calcination production CsHf2(PO4)3 (~1000°C). A new crystalline compound CsHf2F(HPO4)(PO4)2 was found by thermogravimetric and X-ray powder diffraction analysis during heating. A new method for hydrothermal synthesis of CsHf2(PO4)3, which was different from the already known one, was proposed. It was ascertained that CsHf2(PO4)3 possesses a significant X-ray luminescence; whereas in fluorophosphatehafnates show low luminescence intensity.  相似文献   

17.
About Crystalline Sodium Hydroxogallates Two crystalline sodium hydroxogallates 4,5 Na2O · Ga2O3 · 13,5 H2O ( I ) and 5 Na2O · Ga2O3 · 8 H2O ( II ), as well as a crystalline phase of the composition Na2O · Ga2O3 · 4 H2O · 2 NaCl ( III ) are described.  相似文献   

18.
Manganese(II) phosphites MnHPO3·3.6 H2O, Mn3H6P4O12·1.5 H2O, MnH4P2O6·H2O, Mn2H11P5O15·4 H2O, Mn2H17P7O21· 4 H2O and MnH10P4O12·H2O have been studied by IR spectroscopy, thermography and magnetic measurements. Based on the results obtained, the following structural model is proposed: in the compounds studied, each Mn(II) ion is surrounded octahedrally by the oxygen atoms of water molecules and phosphite or polyorthophosphite anions. In the phosphite MnHPO3·3.6H2O the C3v symmetry of the anion decreases to Cs. The anion is characterized by the bond lengthsr PO=1.49 Å and \(r_{PO_2 }\) =1.52 Å, force constantsK PO=7.8 mdyn/Å and \(K_{PO_2 }\) =6.4 mdyn/Å and bond ordersN PO=1.68 and \(N_{PO_2 }\) =2.03. Apart from the interaction between this deformed anion and the Mn(II) cation, hydrogen bonds of approximate length 2.84 Å and energy 5.0 kcal/mole are formed in the phosphite mentioned, linking the water molecules in the coordination sphere. In the other phosphites studied, the following types of hydrogen bond are found: hydrogen bonds linking hydrate water molecules, those between water molecules and the anion, and another systems of hydrogen bonds in the polyorthosphite anions.  相似文献   

19.
The thermal decomposition of MgNH4PO4·H2O, MnNH4PO4 · H2O, CoNH4PO4 · · H2O and CdNH4PO4·H2O were investigated under conventional and under quasiisothermal-quasi-isobaric conditions. The experiments were carried out with a Derivatograph suitable for performing simultaneous TG and EGA examinations. It was found that the thermal decompositions of the four compounds each consist of two partial processes: the departure of the water of crystallization, and the subsequent inseparable escape of the ammonia and constitution water. Depending on the experimental conditions, the two processes more or less overlap. The relatively best separation of the two processes can be attained by using quasi-isothermal and quasi-isobaric conditions.  相似文献   

20.
A new binary Mn0.5Fe0.5(H2PO4)2·xH2O powder was synthesized by simple and cost-effective method using phosphoric acid, manganese and iron metals as starting chemicals. The synthesized solid shows the complex thermal transformations and the final decomposition product is a new binary manganese iron cyclo-tetraphosphate, MnFeP4O12. The X-ray diffraction and FTIR results indicate that the synthesized new binary Mn0.5Fe0.5(H2PO4)2·xH2O and the decomposition MnFeP4O12 powders are a pure monoclinic phase with space group P21/n (Z = 2) and C2/c (Z = 4), respectively. The particle morphologies of Mn0.5Fe0.5(H2PO4)2·xH2O and MnFeP4O12 powders appear as the rod-like tetragonal shape and show a high agglomeration of small particles, which are similar to the case of Mn(H2PO4)2·2H2O and Fe2P4O12, respectively. Room temperature magnetization results show a ferromagnetic behavior of the Mn0.5Fe0.5(H2PO4)2·xH2O and MnFeP4O12 powders, having the hysteresis loops in the range of ?10,000 Oe < H < +10,000 Oe with the specific magnetization values of 25.63 and 13.14 emu/g at 10 kOe, respectively. The lower magnetizations of Mn0.5Fe0.5(H2PO4)2·xH2O and MnFeP4O12 than those of Fe(H2PO4)2·2H2O and Fe2P4O12 powders indicate the presence of Mn ions in substitution position of Fe ions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号