首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
DNA polymerase selectivity is crucial for the survival of any living species, yet varies significantly among different DNA polymerases. Errors within DNA polymerase-catalyzed DNA synthesis result from the insertion of noncanonical nucleotides and extension of misaligned DNA substrates. The substrate binding characteristics among DNA polymerases are believed to vary in properties such as shape and tightness of the binding pocket, which might account for the observed differences in fidelity. Here, we employed 4'-alkylated nucleotides and primer strands bearing 4'-alkylated nucleotides at the 3'-terminal position as steric probes to investigate differential active site properties of human DNA polymerase beta (Pol beta) and the 3'-->5'-exonuclease-deficient Klenow fragment of E. coli DNA polymerase I (KF(exo-)). Transient kinetic measurements indicate that both enzymes vary significantly in active site tightness at both positions. While small 4'-methyl and -ethyl modifications of the nucleoside triphosphate perturb Pol beta catalysis, extension of modified primer strands is only marginally affected. Just the opposite was observed for KF(exo-). Here, incorporation of the modified nucleotides is only slightly reduced, whereas size augmentation of the 3'-terminal nucleotide in the primer reduces the catalytic efficiency by more than 7000- and 260,000-fold, respectively. NMR studies support the notion that the observed effects derive from enzyme substrate interactions rather than inherent properties of the modified substrates. These findings are consistent with the observed differential capability of the investigated DNA polymerases in fidelity such as processing misaligned DNA substrates. The results presented provide direct evidence for the involvement of varied steric effects among different DNA polymerases on their fidelity.  相似文献   

2.
The development of novel artificial nucleobases and detailed X-ray crystal structures for primer/template/DNA polymerase complexes provide opportunities to assess DNA-protein interactions that dictate specificity. Recent results have shown that base pair shape recognition in the context of DNA polymerase must be considered a significant component. The isosteric azole carboxamide nucleobases (compounds 1-5; ) differ only in the number and placement of nitrogen atoms within a common shape and therefore present unique electronic distributions that are shown to dictate the selectivity of template-directed nucleotide incorporation by DNA polymerases. The results demonstrate how nucleoside triphosphate substrate selection by DNA polymerase is a complex phenomenon involving electrostatic interactions in addition to hydrogen bonding and shape recognition. These azole nucleobase analogs offer unique molecular tools for probing nonbonded interactions dictating substrate selection and fidelity of DNA polymerases.  相似文献   

3.
DNA polymerases select the right nucleotide for the growing polynucleotide chain based on the shape and geometry of the nascent nucleotide pairs and thereby ensure high DNA replication selectivity. High‐fidelity DNA polymerases are believed to possess tight active sites that allow little deviation from the canonical structures. However, DNA polymerases are known to use nucleotides with small modifications as substrates, which is key for numerous core biotechnology applications. We show that even high‐fidelity DNA polymerases are capable of efficiently using nucleotide chimera modified with a large protein like horseradish peroxidase as substrates for template‐dependent DNA synthesis, despite this “cargo” being more than 100‐fold larger than the natural substrates. We exploited this capability for the development of systems that enable naked‐eye detection of DNA and RNA at single nucleotide resolution.  相似文献   

4.
DNA polymerase fidelity is of immense biological importance due to the fundamental requirement for accurate DNA synthesis in both replicative and repair processes. Subtle hydrogen-bonding networks between DNA polymerases and their primer/template substrates are believed to have impact on DNA polymerase selectivity. We show that deleting defined interactions of that kind by rationally designed hydrophobic substitution mutations can result in a more selective enzyme. Furthermore, a single-atom replacement within the DNA substrate through chemical modification, which leads to an altered acceptor potential and steric demand of the DNA substrate, further increased the selectivity of the developed systems. Accordingly, this study about the impact of hydrophobic alterations on DNA polymerase selectivity--enzyme and substrate wise--further highlights the relevance of shape complementary and polar interactions on DNA polymerase selectivity.  相似文献   

5.
Enzymatic reactions typically involve complex dynamics during substrate binding, conformational rearrangement, chemistry, and product release. The noncovalent steps provide kinetic checkpoints that contribute to the overall specificity of enzymatic reactions. DNA polymerases perform DNA replication with outstanding fidelity by actively rejecting noncognate nucleotide substrates early in the reaction pathway. Substrates are delivered to the active site by a flexible fingers subdomain of the enzyme, as it converts from an open to a closed conformation. The conformational dynamics of the fingers subdomain might also play a role in nucleotide selection, although the precise role is currently unknown. Using single-molecule F?rster resonance energy transfer, we observed individual Escherichia coli DNA polymerase I (Klenow fragment) molecules performing substrate selection. We discovered that the fingers subdomain actually samples through three distinct conformations--open, closed, and a previously unrecognized intermediate conformation. We measured the overall dissociation rate of the polymerase-DNA complex and the distribution among the various conformational states in the absence and presence of nucleotide substrates, which were either correct or incorrect. Correct substrates promote rapid progression of the polymerase to the catalytically competent closed conformation, whereas incorrect nucleotides block the enzyme in the intermediate conformation and induce rapid dissociation from DNA. Remarkably, incorrect nucleotide substrates also promote partitioning of DNA to the spatially separated 3'-5' exonuclease domain, providing an additional mechanism to prevent misincorporation at the polymerase active site. These results reveal the existence of an early innate fidelity checkpoint, rejecting incorrect nucleotide substrates before the enzyme encloses the nascent base pair.  相似文献   

6.
The replication of genetic information relies on the template-directed extension of DNA primers catalyzed by polymerases. The active sites of polymerases accept four different substrates and ensure fidelity and processivity for each of them. Because of the pivotal role of catalyzed primer extension for life, it is important to better understand this reaction on a molecular level. Here we present results from primer-extension reactions performed with chemical systems that show high reactivity in the absence of polymerases. Small molecular caps linked to the 5'-terminus of templates are shown to enhance the rate and selectivity of primer extension driven by 2-methylimidazolides as activated monomers for any of the four different templating bases (A, C, G, and T). The most consistent effect is provided by a stilbene carboxamide residue, rather than larger aromatic or aliphatic substituents. Up to 20-fold rate enhancements were achieved for the reactions at the terminus of the template. The preference for a medium size cap can be explained by competing interactions with both the oligonucleotides and the incoming deoxynucleotide. The data also show that there is no particularly intractable problem in combining promiscuity with fidelity. Exploratory experiments involving a longer template and a downstream-binding strand with a 5'-cap show up to 38-fold rate acceleration over the same reaction templated by a single overhanging nucleotide.  相似文献   

7.
Y-family DNA polymerases participate in replication stress and DNA damage tolerance mechanisms. The properties that allow these enzymes to copy past bulky adducts or distorted template DNA can result in a greater propensity for them to make mistakes. Of the four human Y-family members, human DNA polymerase iota (hpol?ι) is the most error-prone. In the current study, we elucidate the molecular basis for improving the fidelity of hpol?ι through use of the fixed-conformation nucleotide North-methanocarba-2'-deoxyadenosine triphosphate (N-MC-dATP). Three crystal structures were solved of hpol?ι in complex with DNA containing a template 2'-deoxythymidine (dT) paired with an incoming dNTP or modified nucleotide triphosphate. The ternary complex of hpol?ι inserting N-MC-dATP opposite dT reveals that the adenine ring is stabilized in the anti orientation about the pseudo-glycosyl torsion angle, which mimics precisely the mutagenic arrangement of dGTP:dT normally preferred by hpol?ι. The stabilized anti conformation occurs without notable contacts from the protein but likely results from constraints imposed by the bicyclo[3.1.0]hexane scaffold of the modified nucleotide. Unmodified dATP and South-MC-dATP each adopt syn glycosyl orientations to form Hoogsteen base pairs with dT. The Hoogsteen orientation exhibits weaker base-stacking interactions and is less catalytically favorable than anti N-MC-dATP. Thus, N-MC-dATP corrects the error-prone nature of hpol?ι by preventing the Hoogsteen base-pairing mode normally observed for hpol?ι-catalyzed insertion of dATP opposite dT. These results provide a previously unrecognized means of altering the efficiency and the fidelity of a human translesion DNA polymerase.  相似文献   

8.
There are many methods available for the detection of nucleotide variations in genetic material. Most of these methods are applied after amplification of the target genome sequence by the polymerase chain reaction (PCR). Many efforts are currently underway to develop techniques that can detect single nucleotide variations in genes either by means of, or without the need for, PCR. Allele-specific PCR (asPCR), which reports nucleotide variations based on either the presence or absence of a PCR-amplified DNA product, has the potential to combine target amplification and analysis in one single step. The principle of asPCR is based on the formation of matched or mismatched primer-target complexes by using allele-specific primer probes. PCR amplification by a DNA polymerase from matched 3'-primer termini proceeds, whereas a mismatch should obviate amplification. Given the recent advancements in real-time PCR, this technique should, in principle, allow single nucleotide variations to be detected online. However, this method is hampered by low selectivity, which necessitates tedious and costly manipulations. Recently, we reported that the selectivity of asPCR can be significantly increased through the employment of chemically modified primer probes. Here we report further significant advances in this area. We describe the synthesis of various primer probes that bear polar 4'-C-modified nucleotide residues at their 3' termini, and their evaluation in real-time asPCR. We found that primer probes bearing a 4'-C-methoxymethylene modification have superior properties in the discrimination of single nucleotide variations by PCR.  相似文献   

9.
DNA polymerases catalyze the insertion of a nucleoside triphosphate into the growing polymer chain using the template strand as a guide. Numerous factors such as hydrogen bonding interactions, base-stacking contributions, and desolvation play important roles in controlling the efficiency and fidelity of this process. We previously demonstrated that 5-nitro-indolyl-2'-deoxyriboside triphosphate, a non-natural nucleobase with enhanced base-stacking properties, was more efficiently inserted opposite a non-templating DNA lesion compared to natural templating nucleobases (E. Z. Reineks and A. J. Berdis, Biochemistry, 2004, 43, 393-404). The catalytic enhancement was proposed to reflect increased base-stacking interactions of the non-natural nucleobase with the polymerase and DNA. However, the effects of desolvation could not be unambiguously refuted. To further address the contributions of base stacking and desolvation during translesion DNA replication, we synthesized indolyl-2'-deoxyriboside triphosphate, a nucleobase devoid of nitro groups, and measured its efficiency of enzymatic insertion into modified and unmodified DNA. Removal of the nitro group reduces the catalytic efficiency for insertion opposite an abasic site by 3600-fold. This results from a large decrease in the rate of polymerization (similar 450-fold) coupled with a modest decrease in binding affinity (similar 8-fold). Since both non-natural nucleobases show the same degree of hydrophobicity, we attribute this reduction to the loss of base-stacking contributions rather than desolvation capabilities. Indolyl-2'-deoxyriboside triphosphate can also be inserted opposite natural nucleobases. Surprisingly, the catalytic efficiency for insertion is nearly identical to that measured for insertion opposite an abasic site. These data are discussed within the context of pi-electron interactions of the incoming nucleobase with the polymerase:DNA complex. Despite this lack of insertion selectivity, the polymerase is unable to extend beyond the non-natural nucleobase. This result indicates that indolyl-2'-deoxyriboside triphosphate acts as an indiscriminate chain terminator of DNA synthesis that may have unique therapeutic applications.  相似文献   

10.
Understanding the chemical step in the catalytic reaction of DNA polymerases is essential for elucidating the molecular basis of the fidelity of DNA replication. The present work evaluates the free energy surface for the nucleotide transfer reaction of T7 polymerase by free energy perturbation/empirical valence bond (FEP/EVB) calculations. A key aspect of the enzyme simulation is a comparison of enzymatic free energy profiles with the corresponding reference reactions in water using the same computational methodology, thereby enabling a quantitative estimate for the free energy of the nucleotide insertion reaction. The reaction is driven by the FEP/EVB methodology between valence bond structures representing the reactant, pentacovalent intermediate, and the product states. This pathway corresponds to three microscopic chemical steps, deprotonation of the attacking group, a nucleophilic attack on the P(alpha) atom of the dNTP substrate, and departure of the leaving group. Three different mechanisms for the first microscopic step, the generation of the RO(-) nucleophile from the 3'-OH hydroxyl of the primer, are examined: (i) proton transfer to the bulk solvent, (ii) proton transfer to one of the ionic oxygens of the P(alpha) phosphate group, and (iii) proton transfer to the ionized Asp654 residue. The most favorable reaction mechanism in T7 pol is predicted to involve the proton transfer to Asp654. This finding sheds light on the long standing issue of the actual role of conserved aspartates. The structural preorganization that helps to catalyze the reaction is also considered and analyzed. The overall calculated mechanism consists of three subsequent steps with a similar activation free energy of about 12 kcal/mol. The similarity of the activation barriers of the three microscopic chemical steps indicates that the T7 polymerase may select against the incorrect dNTP substrate by raising any of these barriers. The relative height of these barriers comparing right and wrong dNTP substrates should therefore be a primary focus of future computational studies of the fidelity of DNA polymerases.  相似文献   

11.
An intrastrand cross-link lesion, in which two neighboring nucleobases are covalently tethered, has been site-specifically synthesized into defined sequence oligonucleotides in order to perform in vitro replication studies using either bacterial replicative or translesional synthesis polymerases. The investigated tandem base lesion that involves a cross-link between the methylene group of thymine and the C8 of an adjacent guanine residue has been prepared by UV-photolysis under anaerobic condition of the photolabile precursor 5-(phenylthiomethyl)-2'-deoxyuridine that has been site-specifically incorporated into a 9-mer oligonucleotide. After ligation, the lesion-containing modified oligonucleotide was used as a DNA template in primer extension reactions catalyzed by several DNA polymerases including the fragment Klenow exo-(Kf-) of E. coli polymerase I, the Thermus aquaticus polymerase (Taq pol) and the E. coli translesional DNA polymerase Pol IV (dinB). It was found that the primer extension reaction was stopped after the incorporation of the correct nucleotide dAMP opposite the 3'-thymine residue of guanine(C8-CH2) thymine lesion by Kf- and Pol IV; however it was noted that the efficiency of the nucleotide incorporation was reduced. In contrast, the Taq polymerase was totally blocked at the nucleotide preceding the tandem lesion. These results are strongly suggestive that the present intrastrand cross-link lesion, if not repaired, would constitute a blocking lesion for prokaryotic DNA polymerases, being likely lethal for the cell.  相似文献   

12.
Protein engineering may be achieved by rational design, directed evolution-based methods, or computational protein design. Mostly these methods make recourse to the restricted pool of the 20 natural amino acids. With the ability to introduce different new kinds of functionalities into proteins, the use of noncanonical amino acids became a promising new method in protein engineering. Here, we report on the generation of a multifluorinated DNA polymerase. DNA polymerases are highly dynamic enzymes that catalyze DNA synthesis in a template-dependent manner, thereby passing several conformational states during the catalytic cycle. Here, we globally replaced 32 proline residues by the noncanonical imino acid (4R)-fluoroproline in a DNA polymerase of 540 amino acids (KlenTaq DNA polymerase). Interestingly, the substitution level of the proline residues was very efficient (92%). Nonetheless, the introduction of (4R)-fluoroproline into the DNA polymerase resulted in a highly active fluorinated enzyme, which was investigated in primer extension and PCR assays to analyze activity, selectivity, and stability in comparison to the parental enzyme. The DNA polymerase retained fidelity, activity, and sensitivity as the parental wild-type enzyme accompanied by some loss in thermostability. These results demonstrate that a noncanonical amino acid can be used for substitutions of natural counterparts in a highly dynamic enzyme with high molecular weight without effecting crucial enzyme properties. Furthermore, the employed DNA polymerase represents a promising starting point for directed DNA polymerase evolution with noncanonical amino acids.  相似文献   

13.
14.
Certain DNA polymerases, such as ?29 DNA polymerase, can isothermally copy the sequence of a circular template round by round in a process known as rolling circle amplification (RCA), which results in super‐long single‐stranded (ss) DNA molecules made of tandem repeats. The power of RCA reflects the high processivity and the strand‐displacement ability of these polymerases. In this work, the ability of ?29DNAP to carry out RCA over circular templates containing a protein‐binding DNA aptamer sequence was investigated. It was found that protein–aptamer interactions can prevent this DNA polymerase from reading through the aptameric domain. This finding indicates that protein‐binding DNA aptamers can form highly stable complexes with their targets in solution. This novel observation was exploited by translating RCA arrest into a simple and convenient colorimetric assay for the detection of specific protein targets, which continues to showcase the versatility of aptamers as molecular recognition elements for biosensing applications.  相似文献   

15.
Recently, KOD and its related DNA polymerases have been used for preparing various modified nucleic acids, including not only base-modified nucleic acids, but also sugar-modified ones, such as bridged/locked nucleic acid (BNA/LNA) which would be promising candidates for nucleic acid drugs. However, thus far, reasons for the effectiveness of KOD DNA polymerase for such purposes have not been clearly elucidated. Therefore, using mutated KOD DNA polymerases, we studied here their catalytic properties upon enzymatic incorporation of nucleotide analogues with base/sugar modifications. Experimental data indicate that their characteristic kinetic properties enabled incorporation of various modified nucleotides. Among those KOD mutants, one achieved efficient successive incorporation of bridged nucleotides with a 2'-ONHCH?CH?-4' linkage. In this study, the characteristic kinetic properties of KOD DNA polymerase for modified nucleoside triphosphates were shown, and the effectiveness of genetic engineering in improvement of the enzyme for modified nucleotide polymerization has been demonstrated.  相似文献   

16.
17.
The principles governing the replication fidelity of genomes are not fully understood yet. Watson and Crick's base-pairing principle for matched deoxyribonucleotide (DNA) bases can explain why the guanine–cytosine and adenine-thymine base pairs are approximately one hundred times more stable thermodynamically than mismatched combinations. In vitro, DNA polymerases reduce the number of mismatched base pairs to about 10?6 per Watson–Crick base pair. Replication fidelity can further be enhanced to a mutation probability of 10?10or less in vivo if optimal conditions for DNA synthesis are provided by polymerase–assisting proteins and DNA-repairing enzymes. The precise reasons for the formation of mismatched base pairs (mispairs), which are responsible for a substantial part of DNA mutations, are still in debate. Although it is agreed that a template-directed “reading” of the hydrogen-substitution pattern in the heterocyclic bases is crucial for proper base pairing during DNA synthesis, it is not clear which type of “misreading” leads to mispairs. Misreading may be due to a non-Watson–Crick base pairing as well as to a change in the hydrogen-substitution pattern, leading to Watson-Crick-like mispairs. The surprising discovery of the selective and quantitative DNA-polymerase-catalyzed formation of a pyridine-pyrimidine base pair (involving a nucleotide base analogue) indicated that rare tautomeric forms in template DNA strands can lead to Watson-Crick-like mispairings that are hardly recognized by the polymerase's proofreading activity. This reveals new pathways for substitution mutations (replication-dependent DNA point mutations) and suggests a new type of mutagen in vivo.  相似文献   

18.
The Thermococcus peptonophilus (Tpe) DNA polymerase gene was expressed under the control of the T7lac promoter on pET-22b(+) in Escherichia coli BL21-CodonPlus(DE3)-RIL in order to fully elucidate its biochemical properties and evaluate its feasibility in polymerase chain reaction (PCR) application. The expressed enzyme was then purified by heat treatment followed by two steps of column chromatography after which optimum pH and temperature of the enzyme were evaluated to be 7.0 and 75 °C, respectively. The optimal buffer for PCR with Tpe DNA polymerase consisted of 50 mM Tris–HCl (pH 8.0), 2 mM MgCl2, 80 mM KCl, and 0.02% Triton X-100. Tpe DNA polymerase revealed a 3.6-fold higher fidelity (3.37 × 10−6) than Taq DNA polymerase (12.13 × 10−6) and performed significantly more efficiently in PCR amplification than both Taq and Pfu DNA polymerases. Ratios of 31:1 of Taq to Tpe DNA polymerases allowed PCR amplification of targets up to 15 kb in length with a 2.2-fold higher fidelity than Taq DNA polymerase. The results of the PCR experiments indicate that Tpe DNA polymerase may provide a higher fidelity DNA amplification in a shorter reaction time.  相似文献   

19.
The ability of DNA polymerases to maintain the integrity of the genome even after it has been structurally altered is vital. There is considerable interest in determining the structural properties of the DNA template that polymerases recognize when determining which nucleotide to add to a nascent strand. Mechanistic, synthetic, and structural chemistries have been used to study how DNA polymerase activity is affected by size, shape, pi-stacking, and hydrogen bonds of the template molecules. Herein, we probe the structural aspects of abasic lesions that result in their distinct coding potential in Escherichia coli despite lacking a Watson-Crick base. In particular, we investigate why bypass of 2-deoxyribonolactone (L) results in significant amounts of dG incorporation opposite the lesion, whereas other abasic lesions (e.g., AP) adhere to the "A-rule". Experiments using synthetic analogues reveal that DNA polymerase V bypasses L and increased levels of dG incorporation result from a hydrogen bonding interaction between the carbonyl oxygen and dG. These results show that a DNA polymerase utilizes hydrogen bonding as one structural parameter when decoding an abasic lesion.  相似文献   

20.
Allele-specific polymerase chain reaction is based on polymerase extension from primers that contain a 3' end base that is complementary to a specific mutation and inhibition of extension with wild-type DNA due to a 3' end mismatch. Taq polymerase is commonly used for this assay, but because of the high rate of nucleotide extension from primer 3' base mismatches documented for Taq polymerase, high sensitivity is difficult to achieve. To determine whether other polymerases might improve assay sensitivity, 15 polymerases were tested with mutation-specific primers for two ultraviolet-induced mutations in the human 5S ribosomal RNA genes. Of the 15 polymerases tested, six were capable of discriminating these mutations at levels equivalent to or better than Taq polymerase. All primers were phosphorothioate modified on the 3' end to block removal of the critical 3' mutation-specific base by polymerases containing 3' --> 5' exonuclease "proofreading" activity. The effectiveness of phosphorothioate modification was measured in mock polymerase chain reaction reactions and a time course. All six enzymes containing this exonuclease activity showed some ability to digest phosphorothioate-modified primers and could be divided into two groups, showing fast and slow digestion kinetics. Of the three enzymes that showed slow digestion kinetics, two also showed significantly slower digestion kinetics of unmodified primers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号