首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Proton magnetic resonance (1H magnetic resonance imaging (MRI)) images of human trabecular bone were acquired and discussed for two samples with different porosity. Three-dimensional 3D Spin Echo (3D SE) and Multi-Slice Multi-Echo (MSME) pulse sequences were examined. A very high slice resolution of (38 microm)2 was achieved (MSME). The intensity histograms were found useful for the characterization of the bone porosity. A spatial distribution of the spin-spin relaxation time T2 was monitored with the MSME pulse program. The work demonstrates the great potential of the proton MRI technique in the study of the trabecular bone morphology.  相似文献   

2.
The purpose of this work was to apply fuzzy logic image processing techniques to characterize the trabecular bone structure with high-resolution magnetic resonance images. Fifteen ex vivo high-resolution magnetic resonance images of specimens of human radii at 1.5 T and 12 in vivo high-resolution magnetic resonance images of the calcanei of peri- and postmenopausal women at 3 T were obtained. Soft segmentation using fuzzy clustering was applied to MR data to obtain fuzzy bone volume fraction maps, which were then analyzed with three-dimensional (3D) fuzzy geometrical parameters and measures of fuzziness. Geometrical parameters included fuzzy perimeter and fuzzy compactness, while measures of fuzziness included linear index of fuzziness, quadratic index of fuzziness, logarithmic fuzzy entropy, and exponential fuzzy entropy. Fuzzy parameters were validated at 1.5 T with 3D structural parameters computed from microcomputed tomography images, which allow the observation of true trabecular bone structure and with apparent MR structural indexes at 1.5 T and 3 T. The validation was statistically performed with the Pearson correlation coefficient as well as with the Bland-Altman method. Bone volume fraction correlation values (r) were up to .99 (P<.001) with good agreements based on Bland-Altman analysis showing that fuzzy clustering is a valid technique to quantify this parameter. Measures of fuzziness also showed consistent correlations to trabecular number parameters (r>.85; P<.001) and good agreements based on Bland-Altman analysis, suggesting that the level of fuzziness in high-resolution magnetic resonance images could be related to the trabecular bone structure.  相似文献   

3.
The integral equations that describe scattering in the media with step-rise changing parameters have been numerically solved for the trabecular bone model. The model consists of several hundred discrete randomly distributed elements. The spectral distribution of scattering coefficients in subsequent orders of scattering has been presented. Calculations were carried on for the ultrasonic frequency ranging from 0.5 to 3 MHz. Evaluation of the contribution of the first, second, and higher scattering orders to total scattering of the ultrasounds in trabecular bone was done. Contrary to the approaches that use the μCT images of trabecular structure to modeling of the ultrasonic wave propagation condition, the 3D numerical model consisting of cylindrical elements mimicking the spatial matrix of trabeculae, was applied. The scattering, due to interconnections between thick trabeculae, usually neglected in trabecular bone models, has been included in calculations when the structure backscatter was evaluated. Influence of the absorption in subsequent orders of scattering is also addressed. Results show that up to 1.5 MHz, the influence of higher scattering orders on the total scattered field characteristic can be neglected while for the higher frequencies, the relatively high amplitude interference peaks in higher scattering orders clearly occur.  相似文献   

4.
The study of trabecular structures is important for understanding the mechanism of alcohol related to bone changes. Alcohol consumption can compromise the body mineral composition, affecting the bone metabolism and compromising the skeleton. The effects of the ethanol treatment on the internal microarchitecture of bone samples through 3D microcomputed tomography are shown in this study. The data was acquired from a radiographic system with a micro focus X-ray conic beam and it was used the Feldkamp's technique was used to carry out the 3D reconstructions. The measured microstructure parameters, which were based on stereological concepts, were bone volume fraction, relationship between bone surface and volume, trabecular number, separation and thickness. The results show that this technique is able to analyze these kinds of structures, especially rat bone, as these structures in rats (trabecular diameter) are thinner than in human bones.  相似文献   

5.
Padilla F  Bossy E  Haiat G  Jenson F  Laugier P 《Ultrasonics》2006,44(Z1):e239-e243
Numerical simulation of wave propagation is performed through 31 3D volumes of trabecular bone. These volumes were reconstructed from high synchrotron microtomography experiments and are used as the input geometry in a simulation software developed in our laboratory. The simulation algorithm accounts for propagation into both the saturating fluid and bone but absorption is not taken into account. We show that 3D simulation predicts phenomena observed experimentally in trabecular bones : linear frequency dependence of attenuation, increase of attenuation and speed of sound with the bone volume fraction, negative phase velocity dispersion in most of the specimens, propagation of fast and slow wave depending on the orientation of the trabecular network compared to the direction of propagation of the ultrasound. Moreover, the predicted attenuation is in very close agreement with the experimental one measured on the same specimens. Coupling numerical simulation with real bone architecture therefore provides a powerful tool to investigate the physics of ultrasound propagation in trabecular structures.  相似文献   

6.
Trabecular bone structure and bone density contribute to the strength of bone and are important in the study of osteoporosis. Wavelets are a powerful tool in characterizing and quantifying texture in an image. The purpose of this study was to validate wavelets as a tool in computing trabecular bone thickness directly from gray-level images. To this end, eight cylindrical cores of vertebral trabecular bone were imaged using 3-T magnetic resonance imaging (MRI) and micro-computed tomography (microCT). Thickness measurements of the trabecular bone from the wavelet-based analysis were compared with standard 2D structural parameters analogous to bone histomorphometry (MR images) and direct 3D distance transformation methods (microCT images). Additionally, bone volume fraction was determined using each method. The average difference in trabecular thickness between the wavelet and standard methods was less than the size of 1 pixel size for both MRI and microCT analysis. A correlation (R) of .94 for microCT measurements and that of .52 for MRI were found for the bone volume fraction. Based on these results, we conclude that wavelet-based methods deliver results comparable with those from established MR histomorphometric measurements. Because the wavelet transform is more robust with respect to image noise and operates directly on gray-level images, it could be a powerful tool for computing structural bone parameters from MR images acquired using high resolution and thus limited signal scenarios.  相似文献   

7.
The accumulation of microdamage in trabecular bone tissue is suspected of being a predictive indicator of osteoporosis diagnosis. To quantify this microdamage, the Dynamic AcoustoElastic Testing (DAET) method measures the Time Of Flight (TOF) and amplitude variations of transmitted ultrasound (US) pulses, while the bone sample is submitted to a low frequency sinusoidal hydrostatic pressure (opening/closing of microcracks). However, DAET is both sensitive to viscoelastic properties changes and microcracks density. To verify the microcracks density contribution on DAET results, a numerical approach is proposed. Multliple configurations of microdamaged trabecular bone-tissue-like mesh have been simulated. A 2D pseudo-spectral time domain numerical model was then developed to simulate linear wave propagation in heterogeneous solids. The influence of the microcracks number and orientation on the US TOF was particularly investigated. Results are discussed and compared with experimental data obtained from DAET measurements in trabecular bone samples.  相似文献   

8.
Magnetic resonance imaging (MRI) has been used to analyze trabecular bone architecture in femur heads taken from adult Wistar rats. The aim of this study was to validate the use of MRI in assessing trabecular structure and morphology by comparing standard measures of bone morphology in the rat femur obtained from high resolution MRI with those obtained by conventional optical microscopy and by scanning electron microscopy (SEM). MR images were obtained on a Bruker 4.7 T micro-imaging system using a three-dimensional spin echo sequence with spatial resolution of 23 microm in-plane and a slice thickness of 39 microm. Optical images were obtained by de-calcifying the bone in EDTA and then sectioning 5-microm-thick slices. SEM images were obtained from bone embedded in epoxy resin with surface preparation by diamond polishing. Values of standard bone morphological parameters were compared and correlation coefficients between the MRI and the optical- and SEM-derived measures of morphology were calculated. Partial volume effects in MRI were minimized in this study by the use of very thin slices, yielding better agreement with optical- and SEM-derived measures of trabecular bone morphology than have been obtained in previous studies. Correlations between the MRI and optical data were significantly lower than those between the MRI and SEM data. Effects of de-calcification were also investigated. The results indicate that comparison of MRI with thin (de-calcified) optical images may be inherently flawed due to the destructive de-calcification and sectioning process used to prepare samples for the optical imaging.  相似文献   

9.
The aim of this study was to assess the potential of projection reconstruction (PR) NMR microscopy in the quantitative evaluation of trabecular bone architecture. Short-TE PR spin-echo microimages were acquired at 7.05 T on normal bone explants. The main structural parameters such as bone volume fraction (BVF), trabecular thickness (Tb.Th.) and trabecular separation (Tb.Sp.) were obtained from the 3D microimages using the method of directed secants. Quantitative structural data were then compared with those derived from conventional spin-echo microimages. Our study indicates that projection reconstruction NMR microscopy promises to be more accurate than the conventional FTI method in the analysis of trabecular bone.  相似文献   

10.
Magnetic resonance phase images can be used to assess trabecular bone by measuring the standard deviation of the phases in a region of interest. The standard deviation of regional phase measurements reflects the degree of magnetic field inhomogeneity caused by susceptibility differences between bone and marrow. A 3D computer model of trabecular bone was developed and then used to explore the influence of bone volume fraction and imaging parameters such as pixel size and slice width on the standard deviation of regional phase measurements. The results from these tests show that with appropriate selection of these parameters, phase spread strongly reflects variations in trabecular bone density (a correlation of R(2) = 0.98 with bone volume fraction between 0 and 10%). The technique was then applied in vivo on the radius of 25 patients who already had a bone density scan with peripheral quantitative tomography and a correlation between phase standard deviation and trabecular bone density was found (R(2) = 0.46).  相似文献   

11.
A model of ultrasonic backscattering for cancellous bone saturated by water is proposed. This model assumes that scattering is caused by the solid trabeculae and describes the cancellous bone as a weak scattering medium. The backscatter coefficient is related to the spatial Fourier transform of bone microarchitecture and to the density and compressibility fluctuations between the solid trabeculae and the saturating fluid. The computations of the model make use of three-dimensional numerical images of bone microarchitecture, obtained by tomographic reconstructions with a 10 microm spatial resolution. With this model, the predictions of the frequency dependence and of the magnitude of the backscatter coefficient are reasonably accurate. The theoretical predictions are compared to experimental data obtained on 19 specimens. An accuracy error of approximately 1 dB was found (difference between the averaged experimental values and theoretical predictions). One limit of the model may come from inaccurate values of trabecular bone characteristics needed for the computations (density and longitudinal velocity), which are yet to be precisely determined for human trabecular bone. However, the model is only slightly sensitive to variations of bone material properties. It was found that an accuracy error of 2.2 dB at maximum resulted from inaccurate a priori values of bone material properties. A computation of the elastic mean free path in the medium suggests that multiple scattering plays a minor role in the working frequency bandwidth (0.4-1.2 MHz). It follows from these results that a weak scattering medium model may be appropriate to describe scattering from trabecular bone.  相似文献   

12.
Conventional bone histomorphometry is an important method for quantitative evaluation of bone microstructure. X-ray computed microtomography is a non-invasive technique, which can be used to evaluate histomorphometric indices in trabecular bones (BV/TV, BS/BV, Tb.N, Tb.Th, Tb.Sp). In this technique, 3D images are used to quantify the whole sample, differently from the conventional one, in which the quantification is performed in 2D slices and extrapolated for 3D case. In this work, histomorphometric quantification using synchrotron 3D X-ray computed microtomography was performed to quantify the bone structure at different skeletal sites as well as to investigate the effects of bone diseases on quantitative understanding of bone architecture. The images were obtained at Synchrotron Radiation for MEdical Physics (SYRMEP) beamline, at ELETTRA synchrotron radiation facility, Italy. Concerning the obtained results for normal and pathological bones from same skeletal sites and individuals, from our results, a certain declining bone volume fraction was achieved. The results obtained could be used in forming the basis for comparison of the bone microarchitecture and can be a valuable tool for predicting bone fragility.  相似文献   

13.
Our goal is to assess the potential of computational methods as an alternative to analytical models to predict the two longitudinal wave modes observed in cancellous bone and predicted by the Biot theory. A three-dimensional (3D) finite-difference time-domain method is coupled with 34 human femoral trabecular microstructures measured using microcomputed tomography. The main trabecular alignment (MTA) and the degree of anisotropy (DA) were assessed for all samples. DA values were comprised between 1.02 and 1.9. The influence of bone volume fraction (BV/TV) between 5% and 25% on the properties of the fast and slow waves was studied using a dedicated image processing algorithm to modify the initial 3D microstructures. A heuristic method was devised to determine when both wave modes are time separated. The simulations (performed in three perpendicular directions) predicted that both waves generally overlap in time for a direction of propagation perpendicular to the MTA. When these directions are parallel, both waves are separated in time for samples with high DA and BV/TV values. A relationship was found between the least bone volume fraction required for the observation of nonoverlapping waves and the degree of anisotropy: The higher the DA, the lower the least BV/TV.  相似文献   

14.
Multiple myeloma is due to the proliferation of malignant plasma cells which increase the number of osteoclasts leading to trabecular and cortical bone osteolysis. The 5T2MM murine model reproduces the human disease and microcomputed tomography is a precise tool to investigate bone loss. Bisphosphonates (zoledronic acid or pamidronate) are used in preventing osteolysis. However, loss of cortical bone in not possible to quantify by histomorphometry on histological sections or microCT images.Osteolysis was studied in mice grafted with the 5THL subline to see if one drug was more active after 10 weeks. Mice were distributed into 4 groups: control, untreated, treated with pamidronate or with zoledronic acid. The left femurs were embedded undecalcified and sectioned at 7 μm. The right tibias and femurs were analyzed by microCT and trabecular morphometric parameters were obtained. Cortical bone osteolysis was analyzed by developing a new algorithm to unwrap microCT sections of the cortices, allowing measurement of the number of perforations, porosity and mean perforation area.The bisphosphonates had no significant effect on the tumor growth as evidence by the absence of effect on the M-protein level. Cortical perforations were evidenced on histological sections and their number seemed to be reduced by both bisphosphonates. MicroCT was used to quantify the trabecular bone: a bone loss was evidenced in the untreated myeloma group and both bisphosphonates appeared equal to preserve trabecular mass. However, the number and size of cortical perforations cannot be determined on 3D models. Unwrapping microCT images provided flat images allowing a precise determination of cortical perforations. Pamidronate did not reduce the number and size of cortical perforations but significantly reduced porosity. Zoledronic acid appeared significantly superior and considerably reduced all parameters.Unwrapping microCT image is a new method allowing the measurement of cortical perforations in bone malignancies, a parameter that cannot be measured correctly on 2D histological sections.  相似文献   

15.
Strontium-based medications, such as strontium ranelate, have been suggested to have therapeutic effects in patients with osteoporosis. Strontium salts available off-shelf in stores across North America are assumed to provide similar effects as strontium ranelate and thus should lead to similar distributions of elemental strontium incorporated in bone. The objective of this study was to compare the spatial distribution of strontium in animal bones following the administration of strontium ranelate and strontium citrate. Seventeen-week-old Sprague–Dawley rats were split into three groups over 10 weeks and given 625 mg/kg/day of strontium ranelate and 676 mg/kg/day of strontium citrate; the control group received no additional supplementary strontium. The humeri were collected from all animals, and strontium distribution was mapped using 2D micro-XRF and 3D dual energy K-edge subtraction (KES) imaging. 2D and 3D elemental mapping methods demonstrated that strontium delivered during treatment by both salts had the same spatial distribution. 3D elemental strontium maps of treated animal bones showed that strontium was largely observed in the trabecular regions under the epiphyseal (growth) plate. The thickness of the strontium layers in both the strontium ranelate and strontium citrate sample was not significantly different (p = .9201). 2D micro-XRF and 3D dual-energy KES images effectively elucidated the spatial distribution of elemental strontium in calcified tissue. These methods provide a novel approach to evaluating the potential efficacy of strontium supplements in the treatment of osteoporosis.  相似文献   

16.
The magnetic field induced in the pores of trabecular bone as a result of the susceptibility difference between bone and bone marrow was computed with the aid of magnetic surface charge models generated from images of trabecular bone specimens acquired at 78 and 63 microm resolution. The predicted field was compared with the values derived from 2D and 3D field maps obtained by echo-offset imaging techniques and excellent agreement was found between the two methods. Finally, from the slopes of regression between the experimental and computed fields, the absolute susceptibility of bone was nondestructively determined as -11.0 x 10(-6) (MKS), which is in close agreement with a reported value of -11.3 x 10(-6) obtained with powdered bone by means of a spectroscopic susceptibility matching technique (J. A. Hopkins and F. W. Wehrli, Magn. Reson. Med. 37, 494-500 (1997)).  相似文献   

17.
Dual energy X-ray absorptiometry (DXA), histomorphometry and X-ray microtomography (microCT) were used to assess effects of risedronate and testosterone in a combined rat model of orchidectomy (ORX) and local paralysis induced by botulinum neurotoxin (BTX). Four groups of mature rats were studied for 1 month: SHAM operated; ORX and right hindlimb immobilization (BTX); ORX+BTX+risedronate or testosterone. Changes in bone and body composition were measured by DXA (BMC, lean and fat mass), histomorphometry (BV/TV(2D), Tb.Th and microarchitectural parameters) and microCT (BV/TV(3D), SMI and cortical parameters). ORX and BTX had additive effects on bone loss since differences were maximized on the immobilized bone. The decrease in BMC on the tibial metaphysis reached -33.6% vs. -11.3% in the non-immobilized limb. BV/TV and Tb.N decreased and Tb.Sp increased in both hindlimbs whereas Tb.Th was significantly lower only in the immobilized limb. Decrease of tibial cortical area and thickness was greater in the immobilized limb. Risedronate prevented BMC, BV/TV and architecture loss but not reduction in Tb.Th. Cortical bone was preserved only in the non-immobilized limb. Testosterone was unable to prevent trabecular and cortical bone loss, but it prevents loss of whole body lean mass. In conclusion, ORX and BTX resulted in additive effects on bone loss. Risedronate had protective effects on trabecular bone loss but was less effective on cortical bone.  相似文献   

18.
The increasing use of densitometric devices for assessing bone fragility has progressively strengthened the assumption that mass is the most important property determining bone mechanical competence. Nevertheless, structure and microarchitecture are relevant aspects of bone strength. The study of microarchitecture is based on the measure of width, number, and separation of trabeculae as well as on their spatial organization. There are several methods to assess bone architecture, particularly at the trabecular level. In particular, histomorphometry, based on the use of optical microscopy and on the principles of quantitative histology and stereology, evaluates microarchitecture two-dimensionally, even if these measures appear well correlated to the three-dimensional structure and properties of bone. In addition, new computerized methods allow the acquisition of more sophisticated measurements by means of a digitizer have been introduced to integrate the use of the microscope. These methods supply information on trabecular width as well as on its distribution and on the organization of the trabeculae in the marrow space.

Microarchitecture seems to be a determinant of bone fragility independent of bone density and it is important for understanding the mechanisms of bone fragility as well as the action of the drugs used to prevent osteoporotic fractures. Several in vivo studies (on animals and humans) can provide an additional interpretation for the anti-fracture effect of such drugs. For instance, bisphosphonates and parathyroid hormone seem to preserve or even improve microarchitecture. The challenge for the future will be to evaluate bone quality in vivo with the same or better resolution and accuracy than the invasive methods used today.  相似文献   


19.
In vivo multiple spin echoes (MSE) images of bone marrow in trabecular bone were obtained for the first time on a clinical 1.5 T scanner. Despite of a reduced sensitivity of the MSE trabecular bone images with respect to the cerebral matter ones, it is possible to observe some features in the MSE trabecular bone images that may be useful in the diagnosis of osteopenic states. Two different CRAZED-type MSE imaging sequences based on spin-echo and EPI imaging modalities were applied in phantom and in vivo. Preliminary experimental results indicate that EPI imaging readout seems to conceal the MSE contrast correlated with pore dimension in porous media. However it is still possible to detect anisotropy effects related to the bone structure in MSE-EPI images. Some strategies are suggested to optimize the quality of MSE trabecular bone images.  相似文献   

20.
The lamellar structure of osteoporotic human trabecular bone was characterized experimentally by means of transmission electron microscopy (TEM). More specifically, the TEM was used to determine if trabecular bone exhibits similar lamellar structural motifs as cortical bone by analyzing unmineralized, mineralized and demineralized bone, and to study the influence of the osteocyte network on the lamellar structure of osteoporotic trabecular bone. Comparison with normal trabecular bone is included. This paper summarizes partial results of a larger study, which addressed the characterization of the hierarchical structure of normal versus osteoporotic human trabecular bone [Rubin, M.A., 2001. Multiscale characterization of the ultrastructure of trabecular bone in osteoporotic and normal humans and in two inbred strains of mice. MS Thesis, Georgia Institute of Technology.] at several structural scales.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号