首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Molecular modeling demonstrates that the first excited state of the triplet ketone (T1K) in azide 1b has a (pi,pi*) configuration with an energy that is 66 kcal/mol above its ground state and its second excited state (T2K) is 10 kcal/mol higher in energy and has a (n,pi*) configuration. In comparison, T1K and T2K of azide 1a are almost degenerate at 74 and 77 kcal/mol above the ground state with a (n,pi*) and (pi,pi*) configuration, respectively. Laser flash photolysis (308 nm) of azide 1b in methanol yields a transient absorption (lambdamax=450 nm) due to formation of T1K, which decays with a rate of 2.1 x 105 s-1 to form triplet alkylnitrene 2b (lambdamax=320 nm). The lifetime of nitrene 2b was measured to be 16 ms. In contrast, laser flash photolysis (308 nm) of azide 1a produced transient absorption spectra due to formation of nitrene 2a (lambdamax=320 nm) and benzoyl radical 3a (lambdamax=370 nm). The decay of 3a is 2 x 105 s-1 in methanol, whereas nitrene 2a decays with a rate of approximately 91 s-1. Thus, T1K (pi,pi*) in azide 1b leads to energy transfer to form nitrene 2b; however, alpha-cleavage is not observed since the energy of T2K (n,pi*) is 10 kcal/mol higher in energy than T1K, and therefore, T2K is not populated. In azide 1a both alpha-cleavage and energy transfer are observed from T1K (n,pi*) and T2K (pi,pi*), respectively, since these triplet states are almost degenerate. Photolysis of azide 1a yields mainly product 4, which must arise from recombination of benzoyl radicals 3a with nitrenes 2a. However, products studies for azide 1b also yield 4b as the major product, even though laser flash photolysis of azide 1b does not indicate formation of benzoyl radical 3b. Thus, we hypothesize that benzoyl radicals 3 can also be formed from nitrenes 2. More specifically, nitrene 2 does undergo alpha-photocleavage to form benzoyl radicals and iminyl radicals. The secondary photolysis of nitrenes 2 is further supported with molecular modeling and product studies.  相似文献   

2.
The well-known benzophenone intersystem crossing from S(1)(n,pi*) to T(1)(n,pi*) states, for which direct transition is forbidden by El-Sayed rules, is reinvestigated by subpicosecond time-resolved absorption spectroscopy and effective data analysis for various excitation wavelengths and solvents. Multivariate curve resolution alternating least-squares analysis is used to perform bilinear decomposition of the time-resolved spectra into pure spectra of overlapping transient species and their associated time-dependent concentrations. The results suggest the implication of an intermediate (IS) in the relaxation process of the S(1) state. Therefore, a two step kinetic model, S(1) --> IS --> T(1), is successfully implemented as an additional constraint in the soft-modeling algorithm. Although this intermediate, which has a spectrum similar to the one of T(1)(n,pi*) state, could be artificially induced by vibrational relaxation, it is tentatively assigned to a hot T(1)(n,pi*) triplet state. Two characteristic times are reported for the transition S(1) --> IS and IS --> T(1), approximately 6.5 ps and approximately 10 ps respectively, without any influence of the solvent. Moreover, an excitation wavelength effect is discovered suggesting the participation of unrelaxed singlet states in the overall process. To go further discussing the spectroscopic relevancy of IS and to rationalize the expected involvement of the T(2)(pi,pi*) state, we also investigate 4-methoxybenzophenone. For this neighboring molecule, triplet energy level is tunable through solvent polarity and a clear correlation is established between the intermediate resolved by multivariate data analysis and the presence of a T(2)(pi,pi*) above the T(1)(n,pi*) triplet. It is therefore proposed that the benzophenone intermediate species is a T(1)(n,pi*) high vibrational level in interaction with T(2)(pi,pi*) state.  相似文献   

3.
Photolysis of 3-azido-1,3-diphenyl-propan-1-one (1a) in toluene yields 1,3-diphenyl-propen-1-one (2), whereas irradiation of 3-azido-2,2-dimethyl-1,3-diphenyl-propan-1-one (1b) results in the formation of mainly 2,2-dimethyl-1,3-diphenyl-propan-1-one. Laser flash photolysis (308 nm) of 1a,b in acetonitrile reveals a transient absorption (lambda max = approximately 310 nm) due to the formation of radicals 4a and 4b, respectively, which have lifetimes of approximately 14 micros at ambient temperature. TD-DFT calculations (B3LYP/6-31+G(d)) reveal that the first and second excited states of the triplet ketone (T1K (n,pi*) and T2K (pi,pi*)) in azide 1a are almost degenerate, at approximately 74 and 76 kcal/mol above the ground state (S0), respectively. Similarly, azide 1b has T1K and T2K 75 and 82 kcal/mol above S0, respectively. The calculated transition state for cleaving the C-N bond is located 71 and 74 kcal/mol above S0 in azides 1a and 1b, respectively. The calculated bond dissociation energies for breaking the C-N bond are 55 and 58 kcal/mol for azides 1a and 1b, respectively, making C-N bond breakage accessible from T1K in azides 1 at ambient temperature. In comparison, the irradiation of azides 1 in argon matrices at 14 K lead to the formation of the corresponding triplet alkyl nitrenes (1-n), via intramolecular energy transfer from T2K. The characterization of 1-n was supported by isotope labeling, IR spectroscopy, and molecular modeling.  相似文献   

4.
The photophysical and photochemical properties of N-phthaloyl-methionine (1), S-methyl-N-phthaloyl-cysteine methyl ester (2) and N-phthaloyltranexamic acid (3) were studied by time-resolved UV/Vis spectroscopy, using laser pulses at 248 or 308 nm. The quantum yield of fluorescence is low (phi(f)< 10(-2)) for 1-3 in fluid and glassy media, whereas that of phosphorescence is large (0.3-0.5) in ethanol at - 196 degrees C. The triplet properties were examined in several solvents, at room temperature and below. The spectra and decay kinetics are similar, but the population of the pi(pi*) triplet state, as measured by T-T absorption, is much lower for 1 and 2 than for 3 or N-methyltrimellitimide (5') at ambient temperatures. The quantum yield (phi(delta)) of singlet molecular oxygen O2(1deltag) formation is substantial for 3 and 5' in several air- or oxygen-saturated solvents at room temperature, but small for 2 and 1. The quantum yield of decomposition is substantial (0.2-0.5) for 3 and small (<0.05) for 2 and 1. It is postulated that photoinduced charge separation in the spectroscopically undetectable 3n,pi* state may account for the cyclization products of 1 and 2. In aqueous solution, this also applies for 3, whereas in organic solvents cyclization involves mainly the lower lying 3pi,(pi*) state. Triplet acetone, acetophenone and xanthone are quenched by 1-3 in acetonitrile; the rate constant is close to the diffusion-controlled limit, but smaller for benzophenone. While the energy transfer from the triplet ketone occurs for 3, a major contribution of electron transfer to the N-phthalimide derivative is suggested for 1 and 2, where the radical anion of benzophenone or 4-carboxybenzophenone is observed in alkaline aqueous solution.  相似文献   

5.
Photoexcitations and photoisomerizations due to low-lying n pi* and pi pi* excited states of dimethylpyridines are investigated by density functional theory, CASSCF, CASPT2 and MRCI methodologies. Mechanistic details for the formation of Dewar dimethylpyridines and the interconversions of dimethylpyridines are rationalized through the characterization of minima and transition states on the singlet and triplet potential energy surfaces of relevant intermediates. Our present theoretical schemes suggest that Mobius dimethylpyridine intermediate 14 and azabenzvalene intermediate 10 can serve as possible precursors to Dewar dimethylpyridines and singlet phototransposition products, respectively. The calculations suggest that an S1(pi pi*)/S0 conical intersection in dimethylpyridines 2 is involved in the formation of 14. An azabenzvalene 10 might be formed through S2(pi pi*)/S1(n pi*) interaction followed by an S1/S0 decay in dimethylpyridine 6. Calculated barriers of isomerizations from 14 to Dewar dimethylpyridine 7 and from 10 to 4 are 8.4 and 28.5 kcal mol(-1) at the B3LYP/6-311 G** level, respectively. In the suggested triplet multistage transposition mechanism, an out-of-plane distorted geometry 19 due to vibrational relaxation of the T1(3B1) excited state of 3,5-dimethylpyridine 6 is a precursor of the interconversion of 6 to 2.4-dimethylpyridine 4. The formation of a triplet azaprefulvene 21 with a barrier of 20.7 kcal mol(-1) is a key step during the triplet migration process leading to another out-of-plane distorted structure 27. Subsequent rearomatization of 27 completes the interconversion of 6 with 4. Present calculations provide some insight into the photochemistry of dimethylpyridines at 254 nm.  相似文献   

6.
The photodissociation dynamics of vinyl bromide and perfluorovinyl bromide have been investigated at 234 nm using a photofragment ion imaging technique coupled with a state-selective [2+1] resonance-enhanced multiphoton ionization scheme. The nascent Br atoms stem from the primary C-Br bond dissociation leading to the formation of C2H3(X) and Br(2Pj;j=1/2,3/2). The obtained translational energy distributions have been well fitted by a single Boltzmann and three Gaussian functions. Boltzmann component has not been observed in the perfluorovinyl bromide. The repulsive 3A'(n,sigma *) state has been considered as the origin of the highest Gaussian components. Middle translational energy components with Gaussian shapes are produced from the 1A"(pi,sigma*) and/or 3A"(pi,sigma*) which are very close in energy. Low-energy Gaussian components are produced via predissociation from the 3A'(pi,pi*) state. The assignments have also been supported by the recoil anisotropy corresponding to the individual components. It is suggested that intersystem crossing from the triplet states to the ground state has been attributed to the Boltzmann component and the fluorination reduces the probability of this electronic relaxation process.  相似文献   

7.
The T1(n,pi*) <-- S0 transition of 2-cyclopenten-1-one (2CP) was investigated by using phosphorescence excitation (PE) spectroscopy in a free-jet expansion. The origin band, near 385 nm, is the most intense feature in the T1(n,pi*) <-- S0 PE spectrum. A short progression in the ring-bending mode (nu'(30)) is also observed. The effective vibrational temperature in the jet is estimated at 50 K. The spectral simplification arising from jet cooling helps confirm assignments made previously in the room-temperature cavity ringdown (CRD) absorption spectrum, which is congested by vibrational hot bands. In addition to the origin and nu'(30) assignments, the jet-cooled PE spectrum also confirms the 28(0)(1) (C=O out-of-plane wag), 29(0)(1) (C=C twist), and 19(0)(1) (C=O in-plane wag) band assignments that were made in the T1(n,pi*) <-- S0 room-temperature CRD spectrum. The temporal decay of the T1 state of 2CP was investigated as a function of vibronic excitation. Phosphorescence from the v' = 0 level persists the entire time the molecules traverse the emission detection zone. Thus the phosphorescence lifetime of the v' = 0 level is significantly longer than the 2 micros transit time through the viewing zone. Higher vibrational levels in the T1 state have shorter phosphorescence lifetimes, on the order of 2 micros or less. The concomitant reduction in emission quantum yield causes the higher vibronic bands (above 200 cm(-1)) in the PE spectrum to be weak. It is proposed that intersystem crossing to highly vibrationally excited levels of the ground state is responsible for the faster decay and diminished quantum yield. The jet cooling affords partial rotational resolution in the T1(n,pi*) <-- S0 spectrum of 2CP. The rotational structure of the origin band was simulated by using inertial constants available from a previously reported density functional (DFT) calculation of the T1(n,pi*) state, along with spin constants obtained via a fitting procedure. Intensity parameters were also systematically varied. The optimized intensity factors support a model that identifies the S2(pi,pi*) <-- S0 transition in 2CP as the sole source of oscillator strength for the T1(n,pi*) <-- S0 transition.  相似文献   

8.
The fragmentation dynamics of gas phase phenol molecules following excitation at many wavelengths in the range 279.145 > or = lambdaphot > or = 206.00 nm have been investigated by H Rydberg atom photofragment translational spectroscopy. Many of the total kinetic energy release (TKER) spectra so derived show structure, the analysis of which confirms the importance of O-H bond fission and reveals that the resulting phenoxyl cofragments are formed in a very limited subset of their available vibrational state density. Spectra recorded at lambdaphot > or = 248 nm show a feature centered at TKER approximately 6500 cm(-1). These H atom fragments, which show no recoil anisotropy, are rationalized in terms of initial S1<--S0 (pi*<--pi) excitation, and subsequent dissociation via two successive radiationless transitions: internal conversion to ground (S0) state levels carrying sufficient O-H stretch vibrational energy to allow efficient transfer towards, and passage around, the conical intersection (CI) between the S0 and S2(1pisigma*) potential energy surfaces (PESs) at larger R(O-H), en route to ground state phenoxyl products. The observed phenoxyl product vibrations indicate that parent modes nu16a and nu11 can both promote nonadiabatic coupling in the vicinity of the S0S2 CI. Spectra recorded at lambdaphot < or = 248 nm reveal a faster, anisotropic distribution of recoiling H atoms, centered at TKER approximately 12,000 cm(-1). These we attribute to H+phenoxyl products formed by direct coupling between the optically excited S1(1pi pi*) and repulsive S2(1pi sigma*) PESs. Parent mode nu16b is identified as the dominant coupling mode at the S1/S2 CI, and the resulting phenoxyl radical cofragments display a long progression in nu18b, the C-O in-plane wagging mode. Analysis of all structured TKER spectra yields D0(H-OC6H5) = 30,015 +/- 40 cm(-1). The present findings serve to emphasize two points of wider relevance in contemporary organic photochemistry: (i) The importance of 1) pi sigma* states in the fragmentation of gas phase heteroaromatic hydride molecules, even in cases where the 1pi sigma* state is optically dark. (ii) The probability of observing strikingly mode-specific product formation, even in "indirect" predissociations, if the fragmentation is driven by ultrafast nonadiabatic couplings via CIs between excited (and ground) state PESs.  相似文献   

9.
Velocity imaging technique combined with (2 + 1) resonance-enhanced multiphoton ionization (REMPI) has been used to detect the Br fragment in photodissociation of o-, m-, and p-bromofluorobenzene at 266 nm. The branching ratio of ground state Br(2P3/2) is found to be larger than 96%. Its translational energy distributions suggest that the Br fragments are generated via two dissociation channels for all the molecules. The fast route, which is missing in p-bromofluorobenzene detected previously by femtosecond laser spectroscopy, giving rise to an anisotropy parameter of 0.50-0.65, is attributed to a direct dissociation from a repulsive triplet T1(A' ') or T1(B1) state. The slow one with anisotropy parameter close to zero is proposed to stem from excitation of the lowest excited singlet (pi,pi*)state followed by predissociation along a repulsive triplet (pi,sigma*) state localized on the C-Br bond. For the minor product of spin-orbit excited state Br(2P1/2), the dissociating features are similar to those found in Br(2P3/2). Our kinetic and anisotropic features of decomposition obtained in m- and p-bromofluorobenzene are opposed to those by photofragment translational spectroscopy. Discrepancy between different methods is discussed in detail.  相似文献   

10.
The photophysical properties of a group of Ni(II)-centered tetrapyrroles have been investigated by ultrafast transient absorption spectrometry and DFT/TDDFT methods in order to characterize the impacts of alpha-octabutoxy substitution and benzoannulation on the deactivation pathways of the S1(pi,pi*) state. The compounds examined were NiPc, NiNc, NiPc(OBu)8, and NiNc(OBu)8, where Pc = phthalocyanine and Nc = naphthalocyanine. It was found that the S1(pi,pi*) state of NiNc(OBu)8 deactivated within the time resolution of the instrument (200 fs) to a vibrationally hot T1(pi,pi*) state. The quasidegeneracy of the S1(pi,pi*) and 3(dz2,dx2-y2) states allowed for fast intersystem crossing (ISC) to occur. After vibrational relaxation (ca. 2.5 ps), the T1(pi,pi*) converted rapidly (ca. 19 ps lifetime) and reversibly into the 3LMCT(pi,dx2-y2) state. The equilibrium state, so generated, decayed to the ground state with a lifetime of ca. 500 ps. Peripheral substitution of the Pc ring significantly modified the photodeactivation mechanism of the S1(pi,pi*) by inducing substantial changes in the relative energies of the S1(pi,pi*), 3(dpi,dx2-y2), 3(dz2,dx2-y2), T1(pi,pi*), and 1,3LMCT(pi,dx2-y2) excited states. The location of the Gouterman LUMOs and the unoccupied metal level (dx2-y2) with respect to the HOMO is crucial for the actual position of these states. In NiPc, the S1(pi,pi*) state underwent ultrafast (200 fs) ISC into a hot (d,d) state. Vibrational cooling (ca. 20 ps lifetime) resulted in a cold (dz2,dx2-y2) state, which repopulated the ground state with a 300 ps lifetime. In NiPc(OBu)8, the S1(pi,pi*) state deactivated through the 3(dz2,dx2-y2), which in turn converted to the 3LMCT(pi,dx2-y2) state, which finally repopulated the ground state with a lifetime of 640 ps. Insufficient solubility of NiNc in noncoordinating solvents prevented transient absorption data from being obtained for this compound. However, the TDDFT calculations were used to make speculations about the photoproperties.  相似文献   

11.
The dynamics of the enolic form of acetylacetone (E-AcAc) was investigated using a femtosecond pump-probe experiment. The pump at 266 nm excited E-AcAc in the first bright state, S2(pi pi*). The resulting dynamics was probed by multiphoton ionization at 800 nm. It was investigated for 80 ps on the S2(pi pi*) and S1(n pi*) potential energy surfaces. An important step is the transfer from S2 to S1 that occurs with a time constant of 1.4 +/- 0.2 ps. Before, the system had left the excitation region in 70 +/- 10 fs. An intermediate step was identified when E-AcAc traveled on the S2 surface. Likely, it corresponds to an accidental resonance in the detection scheme that is met along this path. More importantly, some clues are given that an intramolecular vibrational energy relaxation is observed, which transfers excess vibrational energy from the enolic group O-H to the other modes of the molecule. The present multistep evolution of excited E-AcAc probably also describes, at least qualitatively, the dynamics of other electronically excited beta-diketones.  相似文献   

12.
Photochemical properties of photoinduced omega-bond dissociation in naphthyl phenyl ketones having a phenylthiyl moiety as a leaving group, p-(alpha-naphthoyl)benzyl phenyl sulfide (NBPS) and 4-benzoyl-1-naphthylmethyl phenyl sulfide (BNMPS), in solution were investigated by laser flash photolysis techniques. Both ketones were shown to undergo photoinduced omega-bond cleavage of the C-S bond to release the phenyl thiyl radical (PTR) at room temperature. Irrespective of excitation wavelengths of NBPS, a quantum yield (Phi(rad)) of the PTR formation was obtained to be 0.1, whereas that for BNMPS was found to depend on the excitation wavelength, i.e., absorption bands from the ground state (S0) to the excited singlet states, S3, S2, and S1 of BNMPS; Phi(rad)(S3) = 0.77 and Phi(rad)(S2) = Phi(rad)(S1) = 1.0. By using triplet sensitization of p-phenylbenzophenone (PBP), efficiencies (alpha(rad)) of the radical formation in the lowest triplet state (T1(pi,pi*)) of NBPS and BNMPS were determined to be 0 and 1.0, respectively. The agreement between Phi(rad)(S1) and alpha(rad) values for BNMPS indicates that the C-S bond dissociation occurs in the T1 state via the S1 state via a fast intersystem crossing from the S1 to the T1 state. The wavelength dependence of the radical yields upon direct excitation of BNMPS was interpreted in terms of the C-S bond cleavage in the S3 state competing with internal conversion from the S3 to the S2 state. The smaller value of Phi(rad)(S3) than those of Phi(rad)(S1) and Phi(rad)(S2) was proposed to originate from the geminate recombination of singlet radical pairs produced by the bond dissociation via the S3 state. Photoinduced omega-cleavage of NBPS was concluded to take place only in the S1(n,pi*) state. Difference in reactivity of omega-cleavage between the triplet states of NBPS and BNMPS was interpreted in terms of localized triplet exciton in the naphthoyl moieties.  相似文献   

13.
Invisible energy levels of the T1(pi, pi*) state of p-methoxybenzaldehyde (anisaldehyde) and p-cyanobenzaldehyde vapors have been estimated through the temperature dependence of the T2(n, pi*) --> S0 phosphorescence and the S1(n, pi*) --> S0 delayed fluorescence spectra. It is shown that the T1(pi, pi*) levels are located at 900 +/- 100 and 300 +/- 100 cm(-1) below the T2(n, pi*) levels, respectively, for p-methoxybenzaldehyde and p-cyanobenzaldehyde vapors. The estimated T1 energy levels are in good agreement with the phosphorescence origins in rigid glass at 77 K.  相似文献   

14.
1-Nitropyrene (1NPy) is the most abundant nitropolycyclic aromatic contaminant encountered in diesel exhausts. Understanding its photochemistry is important because of its carcinogenic and mutagenic properties, and potential phototransformations into biologically active products. We have studied the photophysics and photochemistry of 1NPy in solvents that could mimic the microenvironments in which it can be found in the atmospheric aerosol, using nanosecond laser flash photolysis, and conventional absorption and fluorescence techniques. Significant interactions between 1NPy and solvent molecules are demonstrated from the changes in the magnitude of the molar absorption coefficient, bandwidth at half-peak, oscillator strengths, absorption maxima, Stokes shifts, and fluorescence yield. The latter are very low (10 (-4)), increasing slightly with solvent polarity. Low temperature phosphorescence and room temperature transient absorption spectra demonstrate the presence of a low energy (3)(pi,pi*) triplet state, which decays with rate constants on the order of 10 (4)-10 (5) s (-1). This state is effectively quenched by known triplet quenchers at diffusion control rates. Intersystem crossing yields of 0.40-0.60 were determined. A long-lived absorption, which grows within the laser pulse, and simultaneously with the triplet state, presents a maximum absorption in the wavelength region of 420-440 nm. Its initial yield and lifetime depend on the solvent polarity. This species is assigned to the pyrenoxy radical that decays following a pseudo-first-order process by abstracting a hydrogen atom from the solvent to form one the major photoproducts, 1-hydroxypyrene. The (3)(pi,pi*) state reacts readily ( k approximately 10 (7)-10 (9) M (-1) s (-1)) with substances with hydrogen donor abilities encountered in the aerosol, forming a protonated radical that presents an absorption band with maximum at 420 nm.  相似文献   

15.
The excited-state dynamics of adenine and thymine dimers and the adenine-thymine base pair were investigated by femtosecond pump-probe ionization spectroscopy with excitation wavelengths of 250-272 nm. The base pairs showed a characteristic ultrafast decay of the initially excited pi pi* state to an n pi* state (lifetime tau(pi pi*) approximately 100 fs) followed by a slower decay of the latter with tau(n pi*) approximately 0.9 ps for (adenine)2, tau(n pi*) = 6-9 ps for (thymine)2, and tau(n pi*) approximately 2.4 ps for the adenine-thymine base pair. In the adenine dimer, a competing decay of the pi pi* state via the pi sigma* state greatly suppressed the n pi* state signals. Similarities of the excited-state decay parameters in the isolated bases and the base pairs suggest an intramonomer relaxation mechanism in the base pairs.  相似文献   

16.
Intramolecular processes of deactivation of 1,3-dimethyl-4-thiouracil (DMTU) from the second excited singlet (S2) (pi, pi*) and the lowest excited triplet (T1) (pi, pi*) states have been studied using perfluoro-1,3-dimethylcyclohexane (PFDMCH) as a solvent. The spectral and photophysical (PP) properties of DMTU in CCl4, hexane and water have also been described. For the first time, the fluorescence from S2 state DMTU has been observed. The picosecond lifetime of DMTU in the S2 state (tau(S2)) in PFDMCH has been proposed to be determined by a very fast intramolecular reversible process of hydrogen abstraction from the ortho methyl group by the thiocarbonyl group. The shortening of tau(S2) in CCl4 is interpreted to be caused by the intermolecular interactions between DMTU (S2) and the solvent. Results of the phosphorescence decay as a function of DMTU concentration were analyzed using the Stern-Volmer formalism, which enabled determination of the intrinsic lifetime of the T1 state (tau0(T1)) and rate constants of self-quenching (k(sq)). The lifetimes, tau0(T1), of DMTU in PFDMCH and CCl4 are much longer than the values hitherto obtained in more reactive solvents. The PP properties of DMTU both in the S2 and T1 states have been shown to be determined by the thiocarbonyl group.  相似文献   

17.
The phosphorescence excitation (PE) spectrum of 4H-pyran-4-one (4PN) vapor at 40-50 degrees C was recorded near 366 nm. The most intense vibronic feature in this region of the spectrum is the T(1)(n,pi*)<--S(0) origin band. The value of nu(0) for the 0(0)(0) transition was determined to be 27 291.5 cm(-1) by comparing the observed spectrum to a simulation in the T(1)<--S(0) origin-band region. Attached to the origin band in the PE spectrum are several Deltav=0 sequence bands involving low-frequency ring modes. From the positions of these bands, together with the known ground-state combination differences, fundamental frequencies for nu(18') (ring bending), nu(13') (ring twisting), and nu(10') (in-plane ring deformation) in the T(1)(n,pi*) excited state were determined to be 126, 269, and 288 cm(-1), respectively. These values represent drops of 15%, 32%, and 43%, compared to the respective fundamental frequencies in the S(0) state. The changes in these ring frequencies indicate that the effects of T(1)(n,pi*)<--S(0) excitation extend beyond the nominal carbonyl chromophore and involve the conjugated ring atoms as well. The delocalization may be more extensive for T(1)(n,pi*) than for S(1)(n,pi*) excitation.  相似文献   

18.
The excited triplet-state transient time profiles of 1,4-anthraquinone (1,4-AQ) have been measured in a degassed CCl4 fluid solution at different temperatures near room temperature, together with the steady-state emission spectra, which consist of the S1(n, pi*) and weak S2(pi, pi*) fluorescence at room temperature, and of the T1(pi, pi*) phosphorescence at 77 K. Quantitative analysis of the T1 triplet decay profiles measured as a function of temperature provides estimates for the energy and rates that characterize the excited-state dynamical behavior of 1,4-AQ.  相似文献   

19.
Density functional theory and CASSCF calculations have been used to optimize the geometries of binuclear gold(I) complexes [H(3)PAu(C[triple bond]C)(n)AuPH(3)] (n=1-6) in their ground states and selected lowest energy (3)(pi pi*) excited states. Vertical excitation energies obtained by time-dependent density functional calculations for the spin-forbidden singlet-triplet transitions have exponential-decay size dependence. The predicted singlet-triplet splitting limit of [H(3)PAu(C[triple bond]C)(proportional/variant)AuPH(3)] is about 8317 cm(-1). Calculated singlet-triplet transition energies are in reasonable agreement with available experimental observations. The effect of the heavy atom Au spin-orbit coupling on the (3)(pi pi*) emission of these metal-capped one-dimensional carbon allotropes has been investigated by MRCI calculations. The contribution of the spin- and dipole-allowed singlet excited state to the spin-orbit-coupling wave function of the (3)(pi pi*) excited state makes the low-lying acetylenic triplet excited states become sufficiently allowed so as to appear in both electronic absorption and emission.  相似文献   

20.
The vibrational structure, rotational structure, and electronic relaxation of the "dark" T1 3A2(n,pi*) state of jet-cooled thiophosgene have been investigated by two-color S2<--T1<--S0 optical-optical double resonance (OODR) spectroscopy, which monitors the S2-->S0 fluorescence generated by S2<--T1 excitation. This method is capable of isolating the T1 vibrational structure into a1, b1, and b2 symmetry blocks. The fluorescence-detected vibrational structure of the Tz spin state of T1 shows that the CS stretching frequency as well as the barrier height for pyramidal deformation are significantly greater in the 3A2(n,pi*) state than in the corresponding 1A2(n,pi*) state. The differing vibrational parameters of the T1 thiophosgene relative to the S1 thiophosgene can be attributed to the motions of unpaired electrons that are better correlated when they are in the excited singlet state than when they are in the triplet state of same electron configuration. A set of T1 structural parameters and the information concerning the T1 spin states have been obtained from least-square fittings of the rotationally resolved T1<--S0 excitation spectrum. The nearly degenerate mid R:x and mid R:y spin states are well removed from mid R:z spin component, indicating that T1 thiophosgene is a good example of case (ab) coupling. The decay of the mid R:z spin state of T1 thiophosgene, obtained from time-resolved S2<--T1<--S0 OODR experiment, is characteristic of strong-coupling intermediate-case decay in which an initial rapid decay is followed by recurrences and/or a long-lived quasiexponential decay.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号