首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The behavior of the nonconjugated aminated benzophenones—4-[2′-N,N-(diethylamino)ethoxy]benzophenone (E4), 2-[2′-N,N-(diethylamino)ethoxy]-4-methoxybenzophenone (E2), and 4-N,N-dimethylaminomethylbenzophenone (DM)—as photoinitiators of MMA polymerization has been studied and the results compared with those obtained with the conjugated aminobenzophenone 4-N,N-dimethylamino-4′-isopropyl-benzophenone (CU—MI). Photoreduction behavior of these compounds in various solvents in the presence and absence of MMA has been also examined. The order of the polymerization reaction with respect to monomer and initiator concentrations has been investigated; values of initiation quantum yield (Φi), Kp/K1/2t and efficiencies of the different radicals have also been determined. Similar polymerization rates (Rp) of methyl methacrylate (MMA) were found when E4 and CU-MI were used as photoinitiators under the same range of absorbed irradiation intensity. This fact results from a compensation between the higher rate of E4 radical production (n-π* transition type) and the greater reactivity of the radicals generated from CU-MI.  相似文献   

2.
Methyl methacrylate (MMA) can be polymerized by the charge-transfer complex formed by the interaction of melamine (MM), MMA and carbon tetrachloride in a non-aqueous solvent like dimethyl sulphoxide (DMSO) or N-N-dimethylformamide. The polymerization can be accelerated by Lewis acids like Fe3?. This paper reports the polymerization of MMA initiated by MM and CCl4 and accelerated with hexakis dimethylsulphoxide iron(III) perchlorate [Fe(DMSO)6] (ClO4)3. A, at 60°. Induction periods were observed for the polymerization initiated by MM and CCl4 alone, but not when the molar ratio of MM to A became 3:1. The molecular weights of the polymers with 3:1 molar ratio of MM to A were higher than with MM alone. The rate constant for the polymerization of MMA in presence of [Fe(MM)3]3+ was 1.4181 × 10?5 1 mol?1 sec?1 at 60°. The transfer constant for CCl4, in the absence of A, is 4.66 × 10?3.  相似文献   

3.
The paper describes the optimization of copper(I) mediated living radical polymerization of N-hydroxysuccinimide methacrylate to achieve AB block copoly(acryl amides) offering a route to polymers with potential biomedical applications. Polymerization of N-hydroxysuccinimide methacrylate was carried out using copper(I) bromide/N-(n-propyl)-2-pyridylmethanimine catalyst with ethyl-2-bromoisobutyrate as the initiator at three different temperatures (70, 50 and 30 °C). Polymerizations at both 70 and 50 °C gave relatively high conversion, 72% and 62% respectively after 4 h. Polymerization at 30 °C the best linear first-order kinetic plot. The polydispersity remained narrow (1.15) and there was a good agreement between experimental, determined by 1H NMR, and theoretical Mn. Polymerization of N-hydroxysuccinimide methacrylate was investigated in more detail by following reactions in situ by 1H NMR. The experimental values of Mn (NMR) were quite close to the theoretical values and the polydispersities were relatively narrow (1.10-1.19). Isolated poly(N-hydroxysuccinimide methacrylate) was used as a macroinitiator for the polymerization of MMA catalyzed by Cu(I)Br in conjunction with N-(n-propyl)-2-pyridylmethanamine ligand leading to block copolymers. A poly(methyl acryl amide) is synthesized indirectly from the reaction of benzyl amine with poly(N-hydroxysuccinimide methacrylate) for 5 h with in DMSO at 50 °C under nitrogen.  相似文献   

4.
Activator generated by electron transfer atom transfer radical polymerization of methyl methacrylate (MMA) in inexpensive, non-toxic poly(ethylene glycol) (PEG), with air-stable Cu(II)X2(X = Br, Cl) as the catalyst and N,N,N′,N′-tetramethylethylenediamine (TMEDA) as both ligand and reducing agent was investigated. The polymerizations in PEG proceeded in a well-controlled manner as evidenced by kinetic studies and chain extension results. The polydispersity of the polymer obtained was quite narrow, with a weight-average molecular weight/number-average molecular weight ratio of less than 1.2. Effects of the TMEDA content and the catalysts on polymerization were also investigated, respectively.  相似文献   

5.
Arene ruthenium(II) complexes bearing the cyclic amines RuCl26-p-cymene)(pyrrolidine)] ( 1 ), [RuCl26-p-cymene)(piperidine)] ( 2 ), and [RuCl26-p-cymene)(peridroazepine)] ( 3 ) were successfully synthesized. Complexes 1 – 3 were fully characterized by means of Fourier transform infrared, UV–visible, and NMR spectroscopy, elemental analysis, cyclic voltammetry, computational methods, and one of the complexes was further studied by single crystal X-ray crystallography. These compounds were evaluated as catalytic precursors for ring-opening metathesis polymerization (ROMP) of norbornene (NBE) and atom-transfer radical polymerization (ATRP) of methyl methacrylate (MMA). NBE polymerization via ROMP was evaluated using complexes 1 – 3 as precatalysts in the presence of ethyl diazoacetate (EDA) under different [NBE]/[EDA]/[Ru] ratios, temperatures (25 and 50°C), and reaction times (5–60 min). The highest yields of polyNBE were obtained with [NBE]/[EDA]/[Ru] = 5000/28/1 for 60 min at 50°C. MMA polymerization via ATRP was conducted using 1 – 3 as catalysts in the presence of ethyl-α-bromoisobutyrate (EBiB) as initiator. The catalytic tests were evaluated as a function of the reaction time using the initial molar ratio of [MMA]/[EBiB]/[Ru] = 1000/2/1 at 95°C. The increase in molecular weight as function of time indicates that complexes 1–3 were able to mediate the MMA polymerization with an acceptable rate and some level of control. Differences in the rate of polymerization were observed in the order 3 > 2 > 1 for the ROMP and ATRP.  相似文献   

6.
Synthesis and cationic polymerization of N-{4-[(oxiranylmethoxy)methyl]phenyl}-N,N-diphenylamine is reported. Diaryliodonium salts and iron-arene complex were used as photoinitiators. Iodonium salts have appeared to be much more effective photoinitiators for polymerization of the monomer than iron-arene complex. The effect of the temperature on the rate of photopolymerization of the monomer with iron-arene complex has been studied.  相似文献   

7.
Reaction of a series of directly connected oxazoline–imidazolium salts with potassium tert-butoxide and in the presence of CuBr · SMe2 at −78 °C cleanly gave the corresponding 2-oxazolinyl-(N-mesityl)imidazolidenecopper(I) complexes which are monomeric in solution but aggregate in the solid state. X-ray diffraction studies established a dimeric structure for [{2-(4,4-dimethyl)-oxazolinyl-(N-mesityl)imidazolidene}(bromo)copper(I)]2 (2a) whereas the chiral derivative [{2-(4-S-isopropyl)-oxazolinyl-(N-mesityl)imidazolidene}(bromo)-copper(I)] (2b) forms infinite chains of a coordination polymer.  相似文献   

8.
Yukihiro Motoyama 《Tetrahedron》2005,61(43):10216-10226
Atom-transfer radical cyclization (ATRC) and addition (ATRA) catalyzed by a coordinatively unsaturated diruthenium amidinate complex 4, [(η5-C5Me5)Ru(μ2-i-PrNC(Me)Ni-Pr)Ru(η5-C5Me5)]+, are investigated, and their features are compared with those of atom-transfer radical polymerization (ATRP). As an example of ATRC, a cationic diruthenium amidinate 4 is found to exhibit excellent catalytic reactivity for the cyclization of N-allyl α-halogenated acetamides including an alkaloid skeleton at ambient temperature. A catalytic species generated in situ from a halide complex, (η5-C5Me5)Ru(μ2-i-PrNC(Me)Ni-Pr)Ru(η5-C5Me5)(X) [X=Cl, Br] and sodium salts of weakly coordinating anions such as NaPF6 and NaBPh4 also shows high catalytic activity; this actually provides a solution for a problematic instability of 4 as the practical catalyst. The in situ-generated catalyst species 4 is also active towards the intermolecular ATRA of α,α,γ-trichlorinated γ-lactam with alkenes at rt to afford the corresponding α-alkylated γ-lactams in moderate yields. Examination of ATRP of methyl methacrylate (MMA) showed that both the isolated 4 [Y=PF6] and in situ-generated 4 [Y=PF6] are effective for the polymerization of MMA in the presence of 2-bromoisobutylate as the initiator. Use of the isolated catalyst results in controlled polymerization at initial stage of the reaction; in contrast, the polymerization with in situ-generated catalyst produces poly(MMA) with wide molecular weight distribution. The isolated catalyst 4 is powerful for the activation of a C-Br bond of macromolecule initiators; BrCMe2CO2[O(CH2)4]n-n-Bu (Mn=3800; Mw/Mn=1.2) initiated ATRP of MMA even at 25 °C to afford the poly(THF)-poly(MMA) block copolymer of Mn=26,000 and Mw/Mn=1.2 with the aid of 4. The roles of the coordinatively unsaturated ruthenium species for these reactions are discussed.  相似文献   

9.
A dipyridylamine ligand with a pendant pyrrole (N-(3-N,N′-bis(2-pyridyl)propylamino)pyrrole, PPP) and its corresponding rhenium(I) complex, Re(CO)32-N,N-PPP)Cl, were synthesized. The structure of Re(CO)32-N,N-PPP)Cl was determined by X-ray crystallography. Electrochemical polymerization of the pyrrole moiety resulted in the immobilization of poly[Re(CO)32-N,N-PPP)Cl] film onto a glassy carbon electrode, which exhibited electrocatalytic activity for the reduction of CO2 to CO.  相似文献   

10.
Ultra-violet, ORD and CD spectra of (?)poly[thio1-(N-N-diethylaminomethyl) ethylene] (Ia) prepared by stereoelective polymerization of racemic N-N-diethyl-N-(thiirane-2-ylmethyl) amine using ZnEt2-(—) 3-3-dimethyl-1,2 butanediol as initiator system, of (+)poly[thio1-(N-N-diethyl aminomethyl) ethylene] obtained from a partially resolved enantiomer using ZnEt2-CH3OH as initiator system, of poly[thio1-(N-methyl-N-sec-butyl aminomethyl) ethylene] and of poly[thio1-(N-methyl-N-(1-phenylethyl) aminomethyl) ethylene] in organic solvents (tertiary amine form) and in water (hydrochloride form) are described. Observed Cotton effects are associated with electronic transitions of chromophores by comparison with model molecules: N-methyl2-aminobutane, ethyl-thio-2-methylbutane and polypropylene sulfide. For polyamine (Ia), their contributions to optical rotatory powers in the visible are evaluated after decomposition of corresponding CD curves in Gaussian partial Cotton effects. The effects of other optically active electronic transitions located below 180 nm are deduced by difference. Influence of positions of chromophores with regard to chiral centers and of the protonation of nitrogen atoms on observed Cotton effects are discussed.  相似文献   

11.
The alternating copolymerization of 1- and 2-vinylnaphthalene (1-VNap and 2-VNap) with methyl methacrylate (MMA) by using diethylaluminum chloride (Et2AlCl) in toluene at 0°C has been studied. No polymerization could occur without Et2AlCl, and alternating copolymers were obtained only when an equimolar amount of Et2AlCl with MMA was supplied. Through 1H-NMR analyses on both dyad and triad of alternating deuterated 1- and 2-α-d-VNap–MMA copolymers, each configuration could be described successfully by a single parameter, coisotacticity σ, whose value was estimated as 0.41 for the former and 0.56 for the latter copolymer, respectively. A rather low coisotacticity of copoly(1-VNap–MMA) was explained in the terms of steric effect (peri effect) of 1-VNap monomer.  相似文献   

12.
Two new potentially hexadentate N2O4 Schiff base ligands 2-((z)-(2-(2-(2-((z)-3,5-di-tert-butyl-2-hydroxybenzylideneamino) phenoxy) phenoxy) phenylimino) methyl)-4,6-di-tert-butylphenol [H2L1] and 2-((z)-(2-(2-(2-((z)-3,5-di-tert-butyl-2-hydroxybenzylideneamino) phenoxy)-5-tert-butylphenoxy) phenylimino) methyl)-4,6-di-tert-butylphenol [H2L2] were prepared from the reaction of 3,5-di-tert-butyl-2-hydroxy benzaldehyde with 1,2-bis(2′-aminophenoxy)benzene or 1,2-bis(2′-aminophenoxy)-4-t-butylbenzene, respectively. From the direct reaction of ligands [H2L1] and [H2L2] with copper(II) and cobalt(II) salts in methanolic solution and in the presence of N(Et)3 the neutral [CuL1], [CuL2], [CoL1] and [CoL2] complexes were prepared. All complexes were characterized by IR spectra, elemental analysis, magnetic susceptibility, mass spectra, molar conductance (Λm), UV-Vis spectra and in the case of [CuL2] with X-ray diffraction. X-ray crystal structure of [CuL2] showed that the complex contains copper(II) in a distorted square planar environment of N2O2 donors. Three CH/π interactions were observed in the molecular structure of latter complex.  相似文献   

13.
The oxidative coupling polymerization of 2,3‐dihydroxynaphthalene with the novel dinuclear‐type copper(II) catalysts successfully produced poly(2,3‐dihydroxy‐1,4‐naphthylene). For example, the MeOH‐insoluble polymer with a number average molecular weight of 4.4 × 103 from the polymerization using the complex of CuCl2 and N,N′‐bis(2‐morpholinoethyl)‐p‐xylylenediamine ( p ‐ 1 ) at room temperature under an O2 atmosphere followed by acetylation of the hydroxyl groups was obtained in 63% yield. The structures of the tetraamine ligands and the counter anion of the copper(II) salts significantly influenced the catalyst activity. The polymerization of 2,2′‐dimethoxy‐1,1′‐binaphthalene‐3,3′‐diol with the 2CuCl2p ‐ 1 catalyst, however, resulted in a lower yield. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 1635–1640, 2005  相似文献   

14.
Ring-opening metathesis polymerization (ROMP) of exo-N-(1-adamantyl)-7-oxanorbornene-5,6-dicarboximide (AdONDI) (3a), exo-N-cyclohexyl-7-oxanorbornene-5,6-dicarboximide (ChONDI) (3b) and exo-N-phenyl-7-oxanorbornene-5,6-dicarboximide (PhONDI) (3c) using well-defined alkylidene ruthenium catalysts (PCy3)2(CI)2RuCHPh (I) and (1,3-dimesityl-4,5-dihydroimidazol-2-ylidene) (PCy3)CI2RuCHPh (II) was studied. The catalysts I and II gave polymers with around 70% and 50% trans vinylene content, respectively. The homopolymer of 3a had a Tg of 198 °C, while poly-3b showed a Tg of 122 °C. Copolymers of 3a, 3b and 3c with norbornene (NB) showed significant Tg increases over poly-NB.  相似文献   

15.
Octahedral iron(II) and cobalt(II) based complexes, [N,N′-di(quinoline-2-methylene)-1,2-phenylenediimine]MCl2, and [N,N′-di(quinoline-2-methylene)diiminocyclohexane]MCl2 (M = Co and Fe), bearing tetradentate diimino nitrogen ligands were prepared and used in tert-butylacrylate (t-BA) polymerization after activation with methylaluminoxane (MAO). In general, polyacrylates with high molar mass and narrow molar mass distribution (MMD ≈ 2) were obtained. In order to understand the influence of the ligand on the polymerization process, polymerization behaviour of the hexacoordinated complexes was compared to pentacoordinated iron(II) and cobalt(II) complexes, 2,6-bis[1-(cyclohexylimido)ethyl]pyridine MCl2 (M = Co and Fe), bearing tridentate diimine nitrogen ligands as well as to free iron(II) chloride. The ability of the MAO activated hexacoordinated complexes to polymerize methylacrylate (MA) and methyl methacrylate (MMA) was also considered, but reduced activities as well as lower molar mass polymers were obtained than in the experiments with t-BA.  相似文献   

16.
Various cross-linked (with N,N′-ethylene (C2), butylene (C4), hexamethylene (C6), or decamethylene (C10)-bisacrylamide) polymer catalysts containing l-histidine and quaternary trimethylammonium groups were imprinted with a racemic transition-state analogue of phenyl 1-benzyloxycarbonyl-3-methylpentylphosphonate for the hydrolysis of p-nitrophenyl N-(benzyloxycarbonyl)-l (or d)-leucinate (Z-l (or d)-Leu-PNP). Among these polymer catalysts, N,N′-C4-bisacrylamide-cross-linked polymer catalyst, which was copolymerized with styrene monomer, exhibited the notable substrate-stereospecificity for the Z-l-Leu-PNP hydrolysis among the hydrolyses of enantiomeric l (or d)-N-protected (such as tert-butyloxycarbonyl (Boc-), acetyl (C2-), decanoyl (C10-) or benzyloxycarbonyl (Z-)) amino acid (Leu, Ala, or Phe) p-nitrophenyl esters in 10 vol.% MeCN-Tris buffer (pH 7.15) at 30°C.  相似文献   

17.
A new protocol for preparation of thermoresponsive poly(N-isopropylacrylamide, NIPAM) containing block copolymers is described. It involves two successive heterogeneous controlled/living nitroxide-mediated polymerizations (NMPs) in supercritical carbon dioxide (scCO2) using N-tert-butyl-N-[1-diethylphosphono-(2,2-dimethylpropyl)]nitroxide (SG1), as the nitroxide. Precipitation NMPs give narrow dispersity macroinitiators (MIs), and a first report of the controlled/living polymerization of N,N-dimethylacrylamide (DMA) in scCO2 is described. The MI is then used in an inverse suspension NMP of NIPAM in scCO2 resulting in the efficient preparation of block copolymers containing DMA, tert-butyl acrylate and styrene. Aqueous cloud point temperature analysis for poly(DMA)-b-poly(NIPAM) and poly(acrylic acid)-b-poly(NIPAM) shows a significant dependence on poly(NIPAM) chain length for a given AB block copolymer.  相似文献   

18.
The atom transfer radical polymerization (ATRP) of MMA was examined using 3-bromo-3-methyl-butanone-2 (MBB) as an initiator in the presence of CuBr as catalyst and 2,6-bis[1-(2,6-diisopropylphenylimino)ethyl]pyridine (BPIEP) as a tridentate N-donor ligand. The effect of various other N-donor ligands including a bisoxazoline ligand, namely, 2,6-bis(4,4-dimethyl-2-oxazolin-2-yl) pyridine (dmPYBOX) was studied in ATRP and reverse ATRP of MMA. The ATRP of MMA in toluene at 90 °C using MBB as initiator was relatively slow in the case of bidentate and faster in the case of tridentate N-donor ligands. The apparent rate constant, kapp, with MBB as initiator and BPIEP as ligand in toluene (50%, v/v) at 90 °C was found to be 7.15 × 10−5 s−1. In addition, reverse ATRP of MMA in diphenylether at 70 °C using BPIEP/CuBr2 as catalyst system was very effective in reducing the reaction time from several hours to 24 h for polymerization of MMA.  相似文献   

19.
1-(N-Acylaminoalkyl)triphenylphosphonium salts 2a-f on reaction with DBU in MeCN are transformed into 1-(N-acylaminoalkyl)amidinium salts 3a-f. Amidinium salts 3d-f with a proton at the β-position undergo slow tautomerization into the corresponding enamides 6d-f. The same 1-(N-acylamino)alkyltriphenylphosphonium salts 2d-f in the presence of Hünig’s base are transformed directly into the corresponding enamides. Phosphonium salts 2, amidinium salts 3, and enamides 6 react with dialkyl malonates in the presence of DBU to give the corresponding amidoalkylation products. α-Amidoalkylation of dialkyl malonates is not observed in the presence of (i-Pr)2EtN, yet proceeds well under these conditions with more acidic nucleophiles, for example, phthalimide or benzyl mercaptan.  相似文献   

20.
From non-fluorescent 8-H fluorophenyldipyrrinones, highly fluorescent (?F 0.4-0.6) analogs have been synthesized by reaction with 1,1′-carbonyldiimidazole to bridge the dipyrrinone nitrogens and form an N,N′-carbonyldipyrrinone (3H,5H-dipyrrolo[1,2-c:2′,1′-f]pyrimidine-3,5-dione). Amphiphilic, water-soluble 8-sulfonic acid derivatives are then obtained by reaction with concd H2SO4. The resulting fluorinated and sulfonated N,N′-carbonyl-bridged dipyrrinones, isolated as their sodium salts, are potential cholephilic fluorescence and 19F MRI imaging agents for use in probing liver and biliary metabolism. After intravenous injection in the rat they were excreted rapidly and largely unchanged in bile. 19F NMR spectroscopy of a pentafluorophenyl-tosylpyrrolinone synthetic precursor exhibited rarely seen diastereotopicity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号