首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
A series of cobalt(II) complexes containing 2-imino-1,10-phenanthrolines have been synthesized and characterized by elemental and spectroscopic analysis. The molecular structures of complexes 2, 3, 8 and 14 were confirmed by X-ray diffraction analysis. On treatment with methylaluminoxane (MAO) or modified methylaluminoxane (MMAO), these cobalt(II) complexes show moderate to high catalytic activities for ethylene oligomerization and butene predominates among the oligomers produced. The parameters of the reaction conditions and the effects of the ligands environment were investigated. To cite this article: S. Jie et al. C. R. Chimie 9 (2006).  相似文献   

2.
The 2-alkoxyimidate-1,10-phenanthroline complexes of manganese, cobalt and nickel have been synthesized by the reaction of 2-cyano-1,10-phenanthroline with metal dichloride in the corresponding alcohol. The metal complexes bearing two 2-cyano-1,10-phenanthrolines were isolated in non-protonic solvent as the coordination around metal core with two ligands and two chlorides. The alkoxyimidation of nitrile linked on ligand was speeded in forming the 2-alkoxyimidate-1,10-phenanthrolinyl metal complexes. All the complexes have been characterized by FT-IR spectra and elemental analysis, and some of their structures have also been confirmed by single-crystal X-ray diffraction analysis. All the metal complexes were evaluated in the catalytic oligomerization of ethylene with some alkylaluminums as co-catalyst; in which manganese complexes were less active, cobalt complexes showed low to moderate activities, and nickel complexes gave moderate to good activities.  相似文献   

3.
A series of iron(III) complexes ligated by 2-(benzimidazole)-6-(1-aryliminoethyl)pyridines was synthesized and examined by 1H NMR, ESI-MS, IR spectroscopic, elemental analysis and X-ray photoelectron spectroscopy (XPS). Activated with methylaluminoxane (MAO), all ferric complexes exhibited good activities (up to 5.38 × 106 g mol−1(Fe) h−1) of ethylene oligomerization and polymerization, and resultant oligomers and polyethylene waxes showed high α-olefin feature, meanwhile the distribution of oligomers mostly resembled Schulz-Flory rules. The various reaction parameters were investigated in detail, and the less bulky and electron-withdrawing substituents of ligands could enhance the catalytic activities of their ferric complexes. The observations explain the cause for unstable activities performed by stored iron(II) complexes.  相似文献   

4.
A series of unsymmetric bimetal(II) (Fe, Co and Ni) complexes ligated by 2-methyl-2,4-bis(6-iminopyridin-2-yl)-1H-1,5-benzodiazepines were synthesized and characterized by IR spectra and elemental analysis, while a representative nickel(II) complex (5a) was determined by single-crystal X-ray crystallography. These iron(II) complexes were found to exhibit good activities for ethylene oligomerization and polymerization in the presence of MMAO and afforded α-olefins in high selectivity, and the composition of oligomers followed the Schluz-Flory distribution. The nickel(II) complexes mainly dimerize ethylene with considerable activity. The influences of coordinative ligands and reaction parameters were fully investigated on the catalytic activity and properties of these complexes.  相似文献   

5.
A series of nickel (II) complexes ligated by 2-imino-1,10-phenanthrolines were synthesized and characterized by elemental and spectroscopic analysis as well as by single-crystal X-ray crystallography. X-ray crystallographic analysis reveals complexes 3, 5, 7 and 11 as the five-coordinated distorted trigonal-bipyramidal geometry. Upon activation with Et2AlCl, these complexes exhibited considerably high activity for ethylene oligomerization (up to 3.76 × 107 g mol−1(Ni) h−1 for 12 with 10 equiv. of PPh3). The ligand environment and reaction conditions significantly affect the catalytic activity of their nickel complexes.  相似文献   

6.
A series of 2-(1-isopropyl-2-benzimidazolyl)-6-(1-aryliminoethyl)pyridyl metal complexes [iron (II) (1a-6a), cobalt (II) (1b-6b) and nickel (II) (1c-6c)] were synthesized and fully characterized by elemental and spectroscopic analyses. Single-crystal X-ray diffraction analyses of five coordinated complexes 5a, 3b, 5b, 1c and 2c reveal 5a and 5b as distorted trigonal-bipyramidal geometry, and 3b, 1c and 2c as distorted square pyramidal geometry. All complexes performed ethylene reactivity with the assistance of various organoaluminums. The iron complexes displayed good activities in the presence of MAO and MMAO. Upon activated by Et2AlCl, the cobalt analogues showed moderate ethylene reactivity, while the nickel analogues exhibited relatively higher activities.  相似文献   

7.
A series of chromium(III) complexes bearing 2-(1-isopropyl-2-benzimidazolyl)-6-(1-(arylimino)ethyl)pyridines were synthesized and characterized by IR spectroscopic and elemental analysis. The X-ray crystallographic analysis revealed a distorted octahedral geometry of the chromium complexes. When activated by Et2AlCl, MAO or MMAO, these chromium complexes exhibited catalytic activities for ethylene oligomerization and polymerization; while the good to high activities (up to 3.95 × 106 g mol−1 (Cr) h−1) were observed in the catalytic systems with MMAO. Therefore, various reaction parameters of the catalytic system with MMAO were investigated in detail. The steric and electronic effects of ligands affected the catalytic activities and the distribution of the products predominantly. Interestingly, sometimes their distributions of oligomers did not resemble the rules of Schulz-Flory or Poisson due to the hexenes produced in low yield.  相似文献   

8.
In this study, five novel Co(II) complexes of 2-(1H-benzimidazol-2-yl)-phenol derivatives (HLx: x = 1–5) have been synthesized and characterized. The general formula for complexes C1 and C2 is K2[Co(HL1,2)2Cl2]·H2O, for complex C3 K2[Co(HL3)2Cl2], and for complexes C4 and C5 [Co(HL4,5)2]. In all complexes, the ligands are coordinated as bidentate, via one imine nitrogen and the phenolate oxygen atoms. The structures of the compounds were characterized by FT-IR, UV–vis, 1H, 13C NMR spectroscopies, ICP and elemental analysis (C, H, and N). The purity of these compounds was ascertained by melting point (m.p.) and TLC. Geometry optimization of the studied complexes was done by Gaussian09 software at B3LYP/TZVP level of theory and satisfactory theoretical–experimental agreement was achieved for NMR and IR spectra of the compounds. Based on the combined experimental and theoretical studies, six-coordinate octahedral structures have been proposed for complexes C1C3, while complexes C4 and C5 had distorted tetrahedral geometry. All complexes were activated with diethylaluminum chloride (Et2AlCl), cobalt(II) complexes containing bulky methyl groups in the aryl moiety show high catalytic activities (1774 kg?mol?1(Co)?h?1) for ethylene oligomerization. The oligomers obtained from the cobalt complexes exhibit good selectivity for linear 1-butene and 1-hexene. Results revealed that both the steric and electronic effects of ligands strongly affect the catalytic activities and the properties of the catalytic products.  相似文献   

9.
A series of 2-(1H-benzimidazol-2-yl)-phenols and their nickel complexes have been synthesized and characterized by elemental and spectroscopic analysis. The molecular structures of ligand L4 and complex C5 were confirmed by X-ray diffraction analysis. X-ray crystallographic analysis revealed that complex C5 has a six-coordinated distorted octahedral geometry. Upon activation with Et2AlCl, these nickel(II) complexes showed good activity for ethylene oligomerization. When PPh3 was added as an auxiliary ligand to the catalytic system, an increased activity as high as 1.60 × 10g mol−1 (Ni) h−1 was observed. The ligand environment and reaction conditions remarkably affected the catalytic behavior of these nickel complexes.  相似文献   

10.
孙文华 《高分子科学》2013,31(4):601-609
 A series of half-titanocene chloride 2-(benzimidazol-2-yl)quinolin-8-olates C1-C6 were synthesized by treating the lithium salts of the ligand with CpTiCl3. All the complexes were characterized by 1H-NMR, 13C-NMR and elemental analyses, and the crystal structure of C3 and C6 was measured by X-ray. These half-titanocene complexes showed moderate catalytic activities toward ethylene polymerization (up to 1840 kg·mol-1(Ti)·h-1) when activated with MMAO, affording the high molecular weight polymers. And they also exhibited good activity for copolymerization of ethylene and α-olefin with low content of co-monomer.  相似文献   

11.
The 1-(6-(quinoxalin-2-yl)pyridin-2-yl)ethanone was synthesized in order to prepare a series of N-(1-(6-(quinoxalin-2-yl)pyridine-2-yl)ethylidene)benzenamines (L1-L7), which provided new alternative NNN tridentate ligands coordinating with iron(II) and cobalt(II) dichloride to form complexes of general formula LFeCl2 (1-7) and LCoCl2 (8-14). All organic compounds were fully characterized by NMR, IR spectroscopic and elemental analysis along with and magnetic susceptibilities and metal complexes were examined by IR spectroscopic and elemental analysis, while their molecular structures (L1, L4, 1, 4, 10, 13) were confirmed by single crystal X-ray diffraction analysis. Upon activation with methylaluminoxane (MAO), all iron complexes gave good catalytic activities for ethylene reactivity (oligomerization and polymerization), while their cobalt analogues showed moderate activities toward ethylene oligomerization with modified methylaluminoxane (MMAO). Various reaction parameters were investigated for better catalytic activities, the higher activities were observed at elevated ethylene pressure. The iron and cobalt complexes with para-methyl substituents of aryl group linked on imino group showed highest activity.  相似文献   

12.
A series of N-(pyridin-2-yl)picolinamide derivatives was synthesized and characterized. Tetranickel complexes were obtained by stoichiometric reaction of NiBr2 and corresponding ligands, and characterized by elemental and spectroscopic analysis. Moreover, the coordination pattern of complex 3a was confirmed by single-crystal X-ray diffraction. In the structure, two ligands linked two nickel atoms to form a unit, and two units were bridged via μ3-OMe and μ2-Br to form a tetranickel cluster. These Ni(II) complexes were investigated in ethylene oligomerization and found to exhibit remarkable catalytic activities upon activation with MAO. Reaction conditions as well as ligand environment significantly affected the catalytic performance of the nickel complexes; the highest activity could be achieved to be 2.7 × 106 g mol−1 Ni h−1.  相似文献   

13.
A series of 2-(1-aryliminoethylidene)quinolines (L) were synthesized and used as bidentate N^N ligands in coordinating with metal (cobalt and iron) chlorides to form complexes of the type LMCl2, cobalt(II) (Co1-Co5) and iron(II) (Fe1-Fe5). All organic compounds and metal complexes were fully characterized, and the molecular structures of the representative complexes Co3·DMF and Fe4·DMF were confirmed as distorted bipyramidal geometry at the metal by single-crystal X-ray diffraction. Upon activation with either methylaluminoxane (MAO) or modified methylaluminoxane (MMAO) under 10 atm ethylene, all complexes showed high activities in ethylene dimerization with activities of up to 1.82 × 106 g mol−1 (Co) h−1 and 5.89 × 105 g mol−1 (Fe) h−1, respectively.  相似文献   

14.
A series of N-(2-pyridyl)benzamides (1)-(11) and their nickel complexes, [N-(2-pyridyl)benzamide]dinickel(II) di-μ-bromide dibromide (12)-(16) and (aryl)[N-(2-pyridyl)benzamido](triphenylphosphine)nickel(II) (17)-(24), were synthesized and characterized. The single-crystal X-ray analysis revealed that 12 and 14 are binuclear nickel complexes bridged by bromine atoms and each nickel atom adopts a distorted trigonal bipyramidal geometry. The key feature of the complexes 17, 19 and 23 is each has a six-membered nickel chelate ring including a deprotonated secondary nitrogen atom and an O-donor atom. The nickel complexes show moderate to high catalytic activity for ethylene oligomerization with methylaluminoxane (MAO) as cocatalyst. The activity of 12-16/MAO systems is up to 3.3 × 104 g mol−1 h−1 whereas for 17-24/MAO systems it is up to 4.94 × 105 g mol−1 atm−1 h−1. The influence of Al/Ni molar ratio, reaction temperature, reaction period and PPh3/Ni molar ratio on catalytic activity was investigated.  相似文献   

15.
A series of nickel (II) complexes (L)NiCl2 (7-9) and (L)NiBr2 (10-12) were prepared by the reactions of the corresponding 2-carboxylate-6-iminopyridine ligands 1-6 with NiCl2 · 6H2O or (DME)NiBr2 (DME = 1,2-dimethoxyethane), respectively. All the complexes were characterized by IR spectroscopy and elemental analysis. Solid-state structures of 7, 8, 10, 11 and 12 were determined by X-ray diffraction. In the cases of 7, 8 and 10, the ligands chelate with the nickel centers in tridentate fashion in which the carbonyl oxygen atoms coordinate with the metal centers, while the carbonyl oxygen atoms are free from coordinating with the nickel centers in 11 and 12. Upon activation with methylaluminoxane (MAO), these complexes are active for ethylene oligomerization (up to 7.97 × 105 g mol−1 (Ni) h−1 for 11 with 2 equivalents of PPh3 as auxiliary ligand) and/or polymerization (1.37 × 104 g mol−1 (Ni) h−1 for 9). The ethylene oligomerization activities of 7-12 were significantly improved in the presence of PPh3 as auxiliary ligands. The effects of the coordination environment and reaction conditions on the ethylene catalytic behaviors have been discussed.  相似文献   

16.
A series of tridentate NˆNˆN iron(II) and cobalt(II) complexes containing N-((pyridin-2-yl)methylene)-quinolin-8-amine derivatives were synthesized and characterized by elemental and spectroscopic analyses. The molecular structure of 1a was confirmed by X-ray diffraction analyses. On treatment with modified methylaluminoxane, these metal complexes exhibited good catalytic activities up to 2.8 × 106 g mol−1(Fe) h−1 for ethylene oligomerization, and butenes were the major products with nice selectivity for 1-C4. The steric and electronic effects on catalytic activities of metal complexes were carefully investigated as well as the influence of various reaction parameters. In the catalytic system, Fe(II) complexes performed better catalytic activities than their Co(II) analogues. With ligands having bulky substituents, the better catalytic activity was observed in catalytic system of Fe(II) complex, however, the lower catalytic activity was obtained in catalytic system of Co(II) complexes.  相似文献   

17.
A series of 2-(methyl-substituted-1H-benzoimidazol-2-yl)-6-(1-aryliminoethyl)pyridines (L1–L6) were synthesized and used as N^N^N tridentate ligands for their nickel complexes (C1–C12). All ligands were fully characterized by elemental, NMR and IR spectroscopic analyses, while their nickel complexes were characterized by elemental and IR spectroscopic analyses. The single-crystal X-ray diffraction reveals that the complexes C1, C3 and C9 have distorted octahedral geometry around the Ni center. All nickel complexes, activated with Et2AlCl, exhibit good catalytic activities toward ethylene oligomerization with major dimerization.  相似文献   

18.
A series of N^N^N tridentate chromium complexes (C1C6) bearing 2-(1H-2-benzimidazolyl)-6-(1-(arylimino)ethyl)pyridine derivatives was synthesized and characterized by elemental and spectroscopic analysis along with single-crystal X-ray crystallography. X-ray crystallographic analyses reveal chromium complex C1 as a distorted six-coordinated octahedral geometry. On treatment with modified methylaluminoxane (MMAO), the chromium complexes exhibited high activities for ethylene oligomerization (up to 1.50 × 106 g mol−1 (Cr) h−1) and polymerization (up to 2.06 × 106 g mol−1 (Cr) h−1) at 10 atm ethylene pressure. Various reaction parameters were investigated in detail, and less steric hindrance and electron-withdrawing substituents of ligands enhance the catalytic activities of their chromium complexes.  相似文献   

19.
A series of nickel(II) complexes ligated by tridentate ligands of 2-quinoxalinyl-6-iminopyridines was synthesized and characterized by elemental and spectroscopic analysis as well X-ray diffraction analysis. X-ray crystallographic analysis revealed the nickel complexes as five-coordinated distorted trigonal bipyramidal geometry. In the presence of Et2AlCl, these complexes displayed high catalytic activity for ethylene oligomerization and the dimmers were produced as main products. The nickel dibromide complexes exhibited relative higher activity than their dichloride analogues. Both elevation of the ethylene pressure and addition of auxiliary ligand have catalytic enhancement effects on all the complexes.  相似文献   

20.
A series of bridged bis(pyridinylimino) ligands were efficiently synthesized through the condensation reaction of 4,4′-methylene-bis(2,6-disubstituted aniline) with 2-pyridinecarboxaldehyde or 2-benzoylpyridine. They reacted with (DME)NiBr2 to form dinuclear Ni(II) complexes. All resultant compounds were characterized by elemental analysis, IR spectra as well as the single-crystal X-ray diffraction to confirm the structures of ligands and complexes. Activated with methylaluminoxane (MAO), these nickel complexes showed considerably good activities for ethylene oligomerization and polymerization. Their catalytic activities and the properties of PEs obtained were depended on the arched environment of ligand and reaction conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号