首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
2,2′-Bipyrimidine metal complexes with Ti, Mo, Fe, Ru, Pt, Ag, and Cu transition metal atoms have been synthesized and structurally characterized. These molecules were prepared by following synthesis methodologies. The reaction of 2,2′-bipyrimidine (1; bipym) with {[Ti](μ-σ,π-CCSiMe3)2}AgOTf ([Ti] = (η5-C5H4SiMe3)2Ti, OTf = OSO2CF3) (2) in a 1:1 molar ratio gave [{[Ti](μ-σ,π-CCSiMe3)2}Ag(bipym)]OTf (3) which on further treatment with another equivalent of 2 produced [({[Ti](μ-σ,π-CCSiMe3)2}Ag)2(μ-1,2,3,4-bipym)](OTf)2 (4). As consequence thereof, the coordination number of Ag(I) was changed from 3 to 4. A platinum-bipym complex with two acetylide substituents was accessible by the gradual reaction of 1 with K2[PtCl4] (5) and two equivalents of HCCR (7a, R = SiMe3; 7b, R = Fc; 7c, R = Rc; Fc = (η5-C5H4)(η5-C5H5)Fe; Rc = (η5-C5H4)(η5-C5H5)Ru) in di-iso-propylamine and in presence of [CuI]. Originating from cis-[(bipym)Pt(CCR)2] (8a, R = SiMe3; 8b, R = Fc; 8c, R = Rc) diverse multinuclear complexes with two, three or four different transition metals could be obtained. These are: [((CO)4Mo)(μ-1,2,3,4-bipym)Pt(CCFc)2] (10), [(AgClO4)(μ-1,2,3,4-bipym){[Pt(μ-σ,π-CCFc)2]AgOClO3}] (12), [(McCC)2Pt(μ-1,2,3,4-bipym)({[Ti](μ-σ,π-CCSiMe3)2}M)]X (15a, Mc = Fc, M = Cu, X = PF6; 15b, Mc = Rc, M = Cu, X = PF6; 15c, Mc = Fc, M = Ag, X = ClO4), and [(McCC)2Pt(μ-1,2,3,4-bipym)PtCl2] (17). Like other organometallic Pt-Ag tweezer complexes, compound 12 decomposed to give FcCC-CCFc (13). During prolonged stirring of 15a and 15b, respectively, [(McCC)2Pt(μ-1,2,3,4-bipym)({[Ti](μ-σ,π-CCSiMe3)(μ-σ,π-CCH)}M)]X (15′a, M = Cu, X = PF6; 15′b, M = Cu, X = PF6) was formed.The structures of 8b, 8c, 15a′, and 15b′ in the solid state are reported. All complexes exhibit the anticipated planar dinuclear Pt-M structure (M = Pt, Cu, Ag) with the 2,2′-bipyrimidine unit in a μ-1,2,3,4-bridging mode.Electrochemical investigations were carried out with 8a, 8b, and 8c and show that no significant influence of R on the bipym redox potentials exists. The typical redox behavior for the bipym, ferrocene, ruthenocene units and platinum were observed.  相似文献   

2.
Heterobimetallic {cis-[Pt](μ-σ,π-CCPh)2}[Cu(NCMe)]BF4 (3a: [Pt] = (bipy)Pt, bipy = 2,2′-bipyridine; 3b: [Pt] = (bipy′)Pt, bipy′ = 4,4′-dimethyl-2,2′-bipyridine) is accessible by the reaction of cis-[Pt](CCPh)2 (1a: [Pt] = (bipy)Pt, 1b: [Pt] = (bipy′)Pt]) with [Cu(NCMe)4]BF4 (2). Substitution of NCMe by PPh3 (4) can be realized by the reaction of 3a with 4, whereby [{cis-[Pt](μ-σ,π-CCPh)2}Cu(PPh3)]BF4 (5) is formed. On prolonged stirring of 3 and 5, respectively, NCMe and PPh3 are eliminated and tetrametallic {[{cis-[Pt](η2-CCPh)2}Cu]2}(BF4)2 (6) is produced. Addition of an excess of NCMe to 6 gives heterobimetallic 3a.When instead of NCMe or PPh3 chelating molecules such as bipy (7) are reacted with 3a then the heterobimetallic π-tweezer molecule [{cis-[Pt](μ-σ,π-CCPh)2}Cu(bipy)]BF4 (8) is formed. Treatment of 8 with another equivalent of 7 produced [Cu(bipy2)]BF4 (9) along with [Pt](CCPh)2. However, when 3b is reacted with 1b in a 1:1 molar ratio then 10 and 11 of general composition [{[Pt](CCPh)2}2Cu]BF4 are formed. These species are isomers and only differ in the binding of the PhCC units to copper(I). A possible mechanism for the formation of 10 and 11 is presented.The solid state structures of 6, 10 and 11 are reported. In 11 the [{cis-[Pt](μ-σ,π-CCPh)2}2Cu]+ building block is set-up by two nearly orthogonal positioned bis(alkynyl) platinum units which are connected by a Cu(I) ion, whereby the four carbon-carbon triple bonds are unsymmetrical coordinated to Cu(I). In trimetallic 10 two cis-[Pt](CCPh)2 units are bridged by a copper(I) center, however, only one of the two PhCC ligands of individual cis-[Pt](CCPh)2 fragments is η2-coordinated to Cu(I) giving rise to the formation of a [(η2-CCPh)2Cu]+ moiety with a linear alkyne-copper-alkyne arrangement (alkyne = midpoint of the CC triple bond). In 6 two almost parallel oriented [Pt](CCPh)2 planes are linked by two copper(I) ions, whereby two individual PhCC units, one associated with each Pt building block, are symmetrically π-coordinated to Cu.  相似文献   

3.
The reaction of [Ti](CCR)2 {[Ti] = (η5-C5H4SiMe3)2Ti; 1a, R = Fc, Fc = (η5-C5H4)Fe(η5-C5H5); 1b, R = Ph} with MX {2a, MX = [Cu(NCCH3)4]BF4; M = Ag; 2b, X = ClO4; 2c, X = NO3} in a 2:1 molar ratio produces the trinuclear heterobimetallic (Ti2M) or heptanuclear heterotrimetallic (Ti2MFe4) complexes [{[Ti](μ-σ,π-CCR)2}2M]X (R = Fc: 3a, M = Cu, X = BF4; 3b, M = Ag, X = ClO4. R = Ph: 3c, M = Cu, X = BF4; 3d, M = Ag, X = ClO4: 3e, M = Ag, X = NO3) in high yield. Complexes 3c-3e are also accessible, when {[Ti](μ-σ,π-CCPh)2}MX (M = Cu: 4a, X = FBF3; M = Ag: 4b, X = OClO3; 4c, X = ONO2) is reacted with one equivalent of 1b. Transferring this reaction scheme to [Ti](CCSiMe3)2 (1c) only the formation of the heterobimetallic tweezer complex {[Ti](μ-σ,π-CCSiMe3)2}MX {4d, MX = [Cu(NCCH3)]BF4; 4e, MX = AgOClO3} is observed which is attributed to the bulkiness of the acetylide-bound Me3Si group. The solid-state structure of 3e is reported. In 3e, two [Ti](CCPh)2 tweezer moieties are chelate-bound by their carbon-carbon triple bonds to a silver(I) ion, resulting in a pseudo-tetrahedral environment at the group-11 metal. is acting as counter-ion to cationic [{[Ti](CCPh)2}2Ag]+.Additionally, the result of cyclic voltammetric studies on [{[Ti](μ-σ,π-CCPh)2}2Cu]BF4 (3c) is reported.  相似文献   

4.
The synthesis of ferrocene-ethynyl phosphine platinum dichloride complexes based on (FcCC)nPh3−nP (1a, n = 1; 1b, n = 2; 1c, n = 3; Fc = ferrocenyl, (η5-C5H5)(η5-C5H4)Fe) is described. Air-oxidation of 1c afforded (FcCC)3PO (6). Treatment of 1a-1c with [(PhCN)2PtCl2] (2) or [(tht)AuCl] (tht = tetrahydrothiophene) (7), respectively, gave the heterometallic transition complexes cis-[((FcCC)nPh3−nP)2PtCl2] (3a, n = 1; 3b, n = 2; 3c, n = 3) or [((FcCC)nPPh3−n)AuCl] (8a, n = 1; 8b, n = 2). Further treatment of these molecules with HCCMc (4a, Mc = Fc; 4b, Mc = Rc = (η5-C5H5)(η5-C5H4)Ru) in the presence of [CuI] produced trans-[((FcCC)Ph2P)2Pt(CCFc)2] (5) (reaction of 3a with 4a) and [(FcCC)nPh3−nPAuCCMc] (n = 1: 9a, Mc = Fc; 9b, Mc = Rc; n = 2: 11a, Mc = Fc; 11b, Mc = Rc) (reaction of 4a, 4b with 8a, 8b), respectively.The structures of 3a, 5, 6, 8, 9a, and 9b in the solid state were established by single-crystal X-ray structure analysis. The main characteristic features of these molecules are the linear phosphorus-gold-acetylide arrangements, the tetra-coordination at phosphorus and the square-planar surrounding at platinum.The electrochemical and spectro-electrochemical behavior of complexes 5, 8a, 9a, 9b and [(Ph3P)AuCCFc] was investigated in the UV/Vis/NIR. Near IR bands that are likely associated with charge transfer from the ((FcCC)Ph2P)2Pt or the ((FcCC)nPh3−nP)Au (n = 0, 1) moieties appear upon oxidation of the σ-bonded ferrocene-ethynyl groups. These bands undergo a (stepwise) blue shift as ferrocene-ethynyl substituents on the phosphine coligands are oxidized.  相似文献   

5.
The synthesis of the new complexes Cp*(dppe)FeCC2,5-C4H2SR (Cp* = 1,2,3,4,5-pentamethylcyclopentadienyl; dppe = 1,2-bis(diphenylphosphino)ethane; 2a, R = CCH; 2b, R = CCSi(CH3)3; 2c, R = CCSi(CH(CH3)2)3; 3a, R = CC2,5-C4H2SCCH; 3c, R = CC2,5-C4H2SCCSi(CH(CH3)2)3) is described. The 13C NMR and FTIR spectroscopic data indicate that the π-back donation from the metal to the carbon rich ligand increases with the size of the organic π-electron systems. The new complexes were also analyzed by CV and the chemical oxidation of 2a and 3c was carried out using 1 equiv of [Cp2Fe][PF6]. The corresponding complexes 2a[PF6] and 3c[PF6] are thermally stable, but 2a[PF6] was too reactive to be isolated as a pure compound. The spectroscopic data revealed that the coordination of large organic π-electron systems to the iron nucleus produces only a weak increase of the carbon character of the SOMO for these new organoiron(III) derivatives.  相似文献   

6.
The syntheses of several diynylgold(I) phosphine complexes, including Au(CCCCH){P(tol)3} (1), Au(CCCCSiMe3)(PR3) (R = Ph 2-Ph, tol 2-tol), Au(CCCCFc)(PPh3) (3), {(tol)3P}Au(CC)nAu{P(tol)3} [n = 2 (4), 3 (6), 4 (7)], {(Ph3P)Au}CCCC{Au[P(tol)3]} (5), [ppn][Au{CCCCAu[P(tol)3]}2] (8), [Au2(μ-I)(μ-dppm)2][Au(CCCCSiMe3)2] (9), Hg{CCCCAu(PR3)}2 (R = Ph 10-Ph, tol 10-tol) and {(triphos)Cu}CCCC{Au[P(tol)3]} (11) are described. Of these, the X-ray molecular structures of 1, 2-tol, 3, 4 and 9 have been determined.  相似文献   

7.
A series of copper(I) and silver(I) carboxylates received from various ferrocenecarboxylic acids was synthesized and used in the preparation of heterooligometallic Ti-Cu(Ag)-Fe complexes. The silver(I) salts [FcCO2Ag] (2a) and [FcCHCHCO2Ag] (2b) (Fc = ferrocenyl, (η5-C5H4)Fe(η5-C5H5)) were obtained through deprotonation of the respective acids FcCO2H (1a) and FcCHCHCO2H (1b) with NEt3, followed by a reaction with [AgNO3]. The heterotrimetallic complexes {[Ti](μ-σ,π-CCSiMe3)2}AgO2CFc (4a) and {[Ti](μ-σ,π-CCSiMe3)2}AgO2CCHCHFc (4b), where [Ti] denotes the (η5-C5H4SiMe3)2Ti unit, were obtained from the reaction of 2a and 2b with the organometallic π-tweezer compound [Ti](CCSiMe3)2 (3). The related heterotrimetallic copper(I) complex {[Ti](μ-σ,π-CCSiMe3)2}CuO2CFc (9a) was prepared via two synthetic routes. First, salt 2a was reacted with [(η2-Me3SiCCSiMe3)CuBr]2 (10) to give the alkyne-stabilized copper(I) carboxylate [(η2-Me3SiCCSiMe3)(CuO2CFc)2]2 (11). Subsequent reaction of 11 with four equivalents of 3 afforded 9a. Alternatively, 9a and its analogues {[Ti](μ-σ,π-CCSiMe3)2}CuO2C-E-Fc (E = trans-CHCH (9b), CH2CH2 (9c)), were prepared from acidolysis of the Cu-CMe bond in {[Ti](μ-σ,π-CCSiMe3)2}CuMe (8) with acids 1a-1c. An analogous reaction between HO2CfcPPh2M(CO)5 (M = Cr (14a), Mo (14b), W (14c); fc = ferrocene-1,1′-diyl) and 8 at−30 °C gave the alkyne/ferrocene-bridged heterotetrametallic compounds {[Ti](μ-σ,π-CCSiMe3)2}CuO2CfcPPh2M(CO)5 (M = Cr (15a), Mo (15b), W (15c)). Reversing the reaction steps so that {[Ti](μ-σ,π-CCSiMe3)2}CuO2CfcPPh2 (12) was prepared first and then reacted with M(CO)5(thf) (M = Cr (13a), Mo (13b), W (13a)) gave complicated reaction mixtures from which pure 15a-15c could not be isolated. The solid-state structures of 5, 7, 9a, and 11 have been corroborated by single-crystal X-ray structural studies and the electrochemical behavior of acids 1a-1c and of complexes 4a, 4b and 9a-9c was studied by cyclic voltammetry.  相似文献   

8.
The synthesis and properties of heterobimetallic Ti-Cd complexes of type {[Ti](μ-η12-CCR)2}CdX2 ([Ti] = Ti(η5-C5H4SiMe3)2; R = SiMe3: 3a, X = Cl; 3b, X = Br; 3c, X = I; R = Fc: 3d, X = Br; Fc = Fe(η5-C5H4)(η5-C5H5) is reported. These compounds were accessible by treatment of [Ti](CCR)2 (1a, R = SiMe3; 1b, R = Fc) with the cadmium salts CdX2 (2a, X = Cl; 2b, X = Br; 2c, X = I) in a 1:1 M ratio in diethyl ether. Dissolving, for example, 3b in tetrahydrofuran afforded coordination polymer [Cd(μ-Br)2(thf)2]n (4) along with the tweezer molecule 1a. Treatment of 3b with two equiv of LiCCFc (5) gave {[Ti](μ-η12-CCSiMe3)2}Cd(CCFc)2 (6) which eliminated at ambient temperature the all-carbon buta-1,3-diyne FcCC-CCFc (7) producing 1a and elemental Cd. The same reaction behavior was observed, when 2b was reacted with 5. The thus obtained bis(alkynyl) cadmium complex Cd(CCFc)2 (8) is redox-active at low temperature producing 7 and Cd(0). When mercury halides HgX2 (9a, X = Cl; 9b, X = Br) are used, then the titanocene dihalides [Ti]X2 (10a, X = Cl; 10b, X = Br) together with Me3SiCC-CCSiMe3 (11) and Hg(0) were formed. Nevertheless, mercury acetylides were available by treatment of Hg(OAc)2 (12) with HCCFc (13) in a 1:2 M ratio. Thus obtained Hg(CCFc)2 (14) gave with [CuBr] (15) coordination polymer [{Hg(η2-CCFc)2}(Cu2(μ-Br)2]n (16), while with [AgPF6] oxidation of the ferrocenyl moieties took place affording dicationic [Hg(CCFc)2]2+ (18).The structures of 3b and 4 in the solid state are reported. Compound 3b shows the typical characteristics for heterobimetallic organometallic π-tweezer complexes with cadmium in a tetrahedral environment, while 4 corresponds to a one-dimensional coordination polymer in which the Cd(II) ions are linked in a edge-sharing fashion by bromide bridges in the pseudo-equatorial plane. The appropriate tetrahydrofuran molecules are completing the pseudo-octahedral coordination sphere at cadmium.The cyclic voltammogram of 14 is reported showing a single reversible redox event at E0 = 0.108 V with ΔEp = 76 mV indicating that there is no communication between the Fc termini along the mercury acetylide unit.  相似文献   

9.
Complexes M(CCCSiMe3)(CO)2Tp′ (Tp′ = Tp [HB(pz)3], M = Mo 2, W 4; Tp′ = Tp [HB(dmpz)3], M = Mo 3) are obtained from M(CCCSiMe3)(O2CCF3)(CO)2(tmeda) (1) and K[Tp′].Reactions of 2 or 4 with AuCl(PPh3)/K2CO3 in MeOH afforded M{CCCAu(PPh3)}(CO)2Tp′ (M = Mo 5, W 6) containing C3 chains linking the Group 6 metal and gold centres.In turn, the gold complexes react with Co33-CBr)(μ-dppm)(CO)7 to give the C4-bridged {Tp(OC)2M}CCCC{Co3(μ-dppm)(CO)7} (M = Mo 7, W 8), while Mo(CBr)(CO)2Tp and Co33-C(CC)2Au(PPh3)}(μ-dppm)(CO)7 give {Tp(OC)2Mo}C(CC)2C{Co3(μ-dppm)(CO)7} (9) via a phosphine-gold(I) halide elimination reaction. The C3 complexes Tp′(OC)2MCCCRu(dppe)Cp (Tp′ = Tp, M = Mo 10, W 11; Tp′ = Tp, M = Mo 12) were obtained from 2-4 and RuCl(dppe)Cp via KF-induced metalla-desilylation reactions. Reactions between Mo(CBr)(CO)2Tp and Ru{(CC)nAu(PPh3)}(dppe)Cp (n = 2, 3) afforded {Tp(OC)2Mo}C(CC)n{Ru(dppe)Cp} (n = 2 13, 3 14), containing C5 and C7 chains, respectively. Single-crystal X-ray structure determinations of 1, 2, 7, 8, 9 and 12 are reported.  相似文献   

10.
Complexes of type {cis-[Pt](μ-σ,π-CCPh)2}AgX (3a, [Pt] = (bipy′)Pt, X = FBF3; 3b, [Pt] = (bipy′)Pt, X = FPF5; 3c, [Pt] = (bipy)Pt, X = OClO3; 3d, [Pt] = (bipy′)Pt, X = BPh4; bipy′ = 4,4′-dimethyl-2,2′-bipyridine; bipy = 2,2′-bipyridine) are accessible by combining cis-[Pt](CCPh)2 (1a, [Pt] = (bipy′)Pt; 1b, [Pt] = (bipy)Pt) with equimolar amounts of [AgX] (2a, X = BF4; 2b, X = PF6; 2c, X = ClO4; 2d, X = BPh4). In 3a-3d the platinum(II) and silver(I) ions are connected by σ- and π-bonded phenyl acetylide ligands. When the molar ratio of 1 and 2 is changed to 2:1 then trimetallic [{cis-[Pt](μ-CCPh)2}2Ag]X (8a, [Pt] = (bipy)Pt, X = BF4; 8b, [Pt] = (bipy′)Pt, X = PF6; 8c, [Pt] = (bipy)Pt, X = BF4) is produced. The solid state structure of 8a was determined by single X-ray crystal structure analysis. In 8a the silver(I) ion is embedded between two parallel oriented cis-[Pt](CCPh)2 units. Within this structural arrangement the phenyl acetylides of individual [Pt](CCPh)2 entities possess a μ-bridging position between Pt(II) and Ag(I). In addition, a very weak dative Pt → Ag interaction is found (Pt-Ag 2.8965(3) Å). The respective silver carbon distances Ag-Cα (2.548(7), 2.447(7) Å) and Ag-Cβ (3.042(7), 2.799(8) Å)(PtCαCβPh) confirm this structural motif.Complexes 8a-8c isomerize in solution to form trimetallic [{cis-[Pt](μ-σ,π-CCPh)2}2Ag]X (9a, [Pt] = (bipy)Pt, X = BF4; 9b, [Pt] = (bipy′)Pt, X = PF6; 9c, [Pt] = (bipy)Pt, X = ClO4). In the latter molecules the organometallic cation [{cis-[Pt](μ-σ,π- CCPh)2}2Ag]+ is set-up by two nearly orthogonal positioned [Pt](CCPh)2 entities which are hold in close proximity by the group-11 metal ion. Within this assembly all four PhCC units are η2-coordinated to silver(I). A possible mechanism for the formation of 9 is presented.  相似文献   

11.
Reactions between 1,2-dichlorohexafluorocyclopentene and Ru(CCH)(dppe)Cp∗ or Ru(CCCCLi)(dppe)Cp∗ have given Ru(CC-c-C5F6Cl-2)(dppe)Cp∗ 4 and Ru(CCCC-c-C5F6Cl-2)(dppe)Cp∗ 7, respectively. Ready hydrolysis of 4 to the ketone Ru{CC[c-C5F4Cl(O)]}(dppe)Cp∗ 5 occurs, which can be converted to Ru{CC(c-C5F4Cl[C(CN)2])}(dppe)Cp∗ 6 by treatment with CH2(CN)2/basic alumina. Spectroscopic, electrochemical and XRD structural studies for 4-7 are reported: for 6, these suggest that the cyanated fluorocarbon ligand is a very powerful electron-withdrawing group.  相似文献   

12.
Reactions of Fc′(CHO)21 (Fc′ = 1,1′-ferrocenediyl) with LiCCR gave substituted propargylic alcohols Fc′{CH(OH)CCR}2 (R = SiMe32, Fc 9). Oxidation (MnO2) of these alcohols afforded the bis(alkynyl ketone)s Fc′{C(O)CCR}2 (R = SiMe33, Fc 10), the former being accompanied by the partially desilylated Fc′{C(O)CCH}-1-{C(O)CCSiMe3}-1′ 4. The reaction between 4 and RuCl(dppe)Cp in the presence of Na[BPh4] gave the cyclic vinylidene complex [Ru{CC[C(O)Fc′C(O)CHCH]}(dppe)Cp]BPh45. The diastereomers were separated by flash chromatography (2) or preparative t.l.c. (9) to give the cis (2a, 9a) and trans (2b, 9b) isomers. Cyclisation of each isomer to the corresponding ferrocenophane was catalysed by pTSA to give Fc′{[CH(CCR)]2O} (R = SiMe36a, 6b; Fc 11a, 11b), of which 6a, 6b could be desilylated to Fc′{[CH(CCH)]2O} 7a, 7b, and further transformed into the bis(η2-alkyne-dicobalt) complexes Fc′{[CH(η2-C2H[Co2(μ-dppm)(CO)4])]2O} 8a, 8b with Co2(μ-dppm)(CO)6. Molecular structures of 3, 5, 6a, 6b, 7a, 7b and 10 were determined by single-crystal XRD methods.  相似文献   

13.
The compounds Ru(CCCCFc)(PP)Cp [PP = dppe (1), dppm (2)], have been obtained from reactions between RuCl(PP)Cp and FcCCCCSiMe3 in the presence of KF (1) or HCCCCFc and K[PF6] (2), both with added dbu. The dppe complex reacts with Co2(CO)6(L2) [L2 = (CO)2, dppm] to give 3, 4 in which the Co2(CO)4(L2) group is attached to the outer CC triple bond. The PPh3 analogue of 3 (5) has also been characterised. In contrast, tetracyanoethene reacts to give two isomeric complexes 6 and 7, in which the cyano-olefin has added to either CC triple bond. The reaction of RuCl(dppe)Cp with HCCCCFc, carried out in a thf/NEt3 mixture in the presence of Na[BPh4], gave [Ru{CCC(NEt3)CHFc}(dppe)Cp]BPh4 (8), probably formed by addition of the amine to an (unobserved) intermediate butatrienylidene [Ru(CCCCHFc)(dppe)Cp]+. The reaction of I2 with 8 proceeds via an unusual migration of the alkynyl group to the Cp ring to give [RuI(dppe){η-C5H4CCC(NEt3)CHFc}]I3 (9). Single-crystal X-ray structural determinations of 1, 2 and 4-9 are reported.  相似文献   

14.
The complexes trans-[Os(CCC6H4-4-CCR)Cl(dppe)2] (R = SiPri31, H 2), trans,trans-[(dppe)2ClOs(CCC6H4-4-CC)RuX(dppe)2] (X = Cl 3, CCC6H4-4-CCSiPri34), trans-[Os(CCC6H4-4-CCC6H4-4-CCR)Cl(dppe)2] (R = SiPri35, H 6), and trans,trans-[(dppe)2ClOs(CCC6H4-4-CCC6H4-4-CC)RuCl(dppe)2] (7) have been synthesized, and the identities of 1, 2, and 6 confirmed by single-crystal X-ray diffraction studies. Cyclic voltammetry shows that the mononuclear complexes 1, 2, 5, and 6 are oxidized at potentials within a narrow range (0.45-0.49 V), in processes centered on the osmium ethynyl neighbourhood and for simplicity assigned as OsII/III, while the heterobinuclear complexes 3, 4, and 7 exhibit lower oxidation potentials for OsII/III and a second oxidation process assigned in a similar fashion to RuII/III; the difference in potential between the Os- and Ru-localized processes decreases as the π-bridge is lengthened. UV-vis-NIR spectroelectrochemical studies on 1 and 5 reveal the appearance on oxidation of a low-energy band ascribed to chloro to metal-ethynyl charge transfer. Osmium-centered oxidation at the heterobinuclear complexes 4 and 7 results in appearance of a low-energy band, which blue-shifts and increases in intensity on further oxidation to 42+ and 72+.  相似文献   

15.
The oxidative addition of C6H4-1,4-I2 (1) to Pd(PPh3)4 (2) gives mononuclear trans-(Ph3P)2Pd(C6H4-4-I)(I) (3), which can be converted to trans-(Ph3P)2Pd(C6H4-4-I)(OTf) (5) by its reaction with [AgOTf] (4). Complex 5 can be used in the high-yield preparation of a series of unique cationic mono- and dinuclear palladium complexes of structural type [trans-(Ph3P)2Pd(C6H4-4-I)(L)]+ (7, L = C4H4N2; 9a, L = C5H4N-4-CN; 9b, L = NC-4-C5H4N) and [trans-(C6H4-4-I)(Ph3P)2Pd ← NN → Pd(PPh3)2(C6H4-4-I)]2+ (14a, NN = C6H4-1,4-(CN)2; 14b, NN = (C6H4-4-CN)2; 14c, NN = 4,4′-bipyridine (=bipy)). Complexes 7, 9 and 14 rearrange in solution to give [trans-(Ph3P)2Pd(C6H4-4-PPh3)(L)]2+ (10, L = C4H4N2; 12a, L = C5H4N-4-CN; 12b, L = NC-4-C5H4N) and [trans-(C6H4-4-PPh3)(Ph3P)2Pd ← NN → Pd(PPh3)2(C6H4-4-PPh3)]4+ (15a, NN = C6H4-1,4-(CN)2; 15b, NN = (C6H4-4-CN)2) along with {[(Ph3P)2(Ph3P-4-C6H4)Pd(μ-I)]2}2+ (11).The solid state structures of 3, 9a, 10, 11 and 15b are reported. Most characteristic for all complexes is the square-planar coordination geometry of palladium with trans-positioned PPh3 ligands. In 3 the iodide and the 4-iodo-benzene are linear oriented laying with the palladium atom on a crystallographic C2 axes. In 9a this symmetry is broken by steric interactions of the PPh3 ligands with the 4-cyanopyridine and 4-iodobenzene groups. Compound 11 contains two μ-bridging iodides with different Pd-I separations showing that the ligand induces a stronger trans-influence than PPh3. In 15b, the Ph3PC6H4Pd ← NCC6H4C6H4CN → PdC6H4PPh3 building block is rigid-rod structured with the C6H4 units perpendicular oriented to the Pd coordination plane, while the biphenylene connecting moiety is in-plane bound.  相似文献   

16.
The synthesis of Fc(CC)3Ru(dppe)Cp (2) from Fc(CC)3SiMe3 and RuCl(dppe)Cp is described, together with its reactions with tcne to give the tetracyano-dienyl FcCCCC{C[C(CN)2]}2Ru(dppe)Cp (3) and -cyclobutenyl FcCCCC{CCC(CN)2C(CN)2}Ru(dppe)Cp (4), with Co2(μ-dppm)n(CO)8−2n (n = 0, 1) to give FcC2{Co2(CO)6}C2{Co2(CO)6}CCRu(dppe)Cp (5) and FcCCCCC2{Co2(μ-dppm)(CO)4}Ru(dppe)Cp (6), respectively, and with Os3(CO)10(NCMe)2 to give Os33-C2CCCC[Ru(dppe)Cp]}(CO)10 (7). On standing in solution, the latter isomerises to the cyclo-metallated derivative Os3(μ-H){μ3-C[Ru(dppe)Cp]CCC[(η-C5H3)FeCp]}(CO)8 (8). X-ray structural determinations of 1, 2, 6 and 7 are reported.  相似文献   

17.
The σ-alkynyl complexes Ni(η5-C5H5)(PPh3)-CC-R (1), Ni(η5-C5H5)(PPh3)-CC-X-CCH (2) and Ni(η5-C5H5)(PPh3)-CC-X-CC-Ni(η5-C5H5)(PPh3) (3), reactwith 7,7,8,8-tetracyanoquinodimethane, TCNQ, at 30 °C by insertion of the alkyne CC into a CC(CN)2 bond to give Ni(η5-C5H5)(PPh3)-C{C6H4C(CN)2}-C{C(CN)2}-R (4), from 1, Ni(η5-C5H5)(PPh3)-C{C6H4C(CN)2}-C{C(CN)2}-X-CCH (5), from 2, and Ni(η5-C5H5)(PPh3)-C{C6H4C(CN)2}-C{C(CN)2}-X-CC-Ni(η5-C5H5)(PPh3) (6),and Ni(η5-C5H5)(PPh3)-C{C6H4C(CN)2}- C{C(CN)2}-X-C{C(CN)2}-C{C6H4C(CN)2}-Ni(η5-C5H5)(PPh3) (7),from 3 {R = (a) C6H5, (b) 4-PhC6H4, (c) 4-Me2NC6H4, (d) 1-C10H7 (1-naphthyl), (e) 2-C10H7 (2-naphthyl), (f) 9-C14H9 (9-phenanthryl), (g) 9-C14H9 (9-anthryl), (h) 3-C16H9 (3-pyrenyl), (i) 1-C20H11 (1-perylenyl), (j) 2-C4H3S (2-thienyl), (k) C10H9Fe (ferrocenyl = Fc) and (l) H; X = (a) nothing, (b) 1,4-C6H4, (c) 1,3-C6H4 and (d) 4,4′-C6H4-C6H4}. The reaction is regiospecificand the other possible insertion product, R-C{C6H4C(CN)2}-C{C(CN)2}-Ni(η5-C5H5)(PPh3) etc., is not formed. Under the same conditions, there is no evidencefor the reaction of TCNQ with the -CCH of 2, PhCCH, 1,4-C6H4(CCH)2 or FcCCH, or for the reaction of more than one CC(CN)2 of TCNQ with a Ni-alkynyl moiety. Complexes 4-7 are all air-stable, purple solids which have been characterised by elemental analysis and spectroscopy (IR, UV-Vis, 1H NMR and 13C NMR),and by X-ray diffraction for 4a, 4b and 4l. The UV-Vis spectra of 4-7 are very similar. This implies that all contain the same active chromophore which, it is suggested, is Ni-C(5)C6H4C(CN)2 and not R-C(4)C(CN)2. This isconsistent with the molecular structures of 4a, 4b and 4l which show that the first of these potentially chromophoric fragments is planar or close to it with an in-built potential for delocalisation, whilst in the second the aryl group R is almost orthogonal to the CC(CN)2 plane. The molecular structures of 4a, 4b and 4l also reveal a short Ni?C(4) separation, indicative of a Ni → C(4) donor-acceptor interaction. The electrochemistry of 4a shows aquasi reversible oxidation at ca. 1 V and complicated reduction processes. It is typical of most 4, but 4l is different in that it shows the same quasi reversible oxidation at ca. 1 V but two reversible reductions at −0.26 and −0.47 V (vs. [Fe(η5-C5Me5)2]+/0 0.0 V).  相似文献   

18.
19.
[MBr(CO)5] reacts with m-ethynylphenylamine and pyridine-2-carboxaldehyde in refluxing tetrahydrofuran to give, fac-[MBr(CO)3(py-2-CHN-C6H4-m-(CCH))] (M = Mn, 1a; Re, 2a). The same method affords the tetracarbonyl [Mo(CO)4{py-2-CHN-C6H4-m-(CCH)}] (3a) starting from [Mo(CO)4(piperidine)2]; and the methallyl complex [MoCl(η3-C3H4Me-2)(CO)2{py-2-CHN-C6H4-m-(CCH)}] (4a) from [MoCl(η3-C3H4Me-2)(CO)2(NCMe)2]. The use of p-ethynylphenylamine gives the corresponding derivatives (1b, 2b, 3b, and 4b) with the ethynyl substituent in the para-position at the phenyl ring of the iminopyridine. All complexes have been isolated as crystalline solids and characterized by analytical and spectroscopic methods. X-ray determinations, carried out on crystals of 1a, 1b, 2a, 2b, 3b, 4a, and 4b, reveals the same structural type for all compounds with small variations due mainly to the different size of the metal atoms. The reaction of complexes 1a or 2a with dicobalt octacarbonyl affords the tetrahedrane complexes [MBr(CO)3{py-2-CHN-C6H4-m-{(μ-CCH)Co2(CO)6}}] (M = Mn, 5; Re, 6), the structures of which have been confirmed by an X-ray determination on a crystal of compound 5.  相似文献   

20.
Reactions of Ru(CCPh)(PPh3)2Cp with (NC)2CCR1R2 (R1 = H, R2 = CCSiPri38; R1 = R2 = CCPh 9) have given η3-butadienyl complexes Ru{η3-C[C(CN)2]CPhCR1R2}(PPh3)Cp (11, 12), respectively, by formal [2 + 2]-cycloaddition of the alkynyl and alkene, followed by ring-opening of the resulting cyclobutenyl (not detected) and displacement of a PPh3 ligand. Deprotection (tbaf) of 11 and subsequent reactions with RuCl(dppe)Cp and AuCl(PPh3) afforded binuclear derivatives Ru{η3-C[C(CN)2]CPhCHCC[MLn]}(PPh3)Cp [MLn = Ru(dppe)Cp 19, Au(PPh3) 20]. Reactions between 8 and Ru(CCCCR)(PP)Cp [PP = (PPh3)2, R = Ph, SiMe3, SiPri3; PP = dppe, R = Ph] gave η1-dienynyl complexes Ru{CCC[C(CN)2]CRCH[CC(SiPri3)]}(PP)Cp (15-18), respectively, in reactions not involving phosphine ligand displacement. The phthalodinitrile C6H(CCSiMe3)(CN)2(NH2)(SiMe3) 10 was obtained serendipitously from (Me3SiCC)2CO and CH2(CN)2, as shown by an XRD structure determination. The XRD structures of precursor 7 and adducts 11, 12 and 17 are also reported.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号