首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
Phosphate adsorption from single electrolyte (NaH2PO4), phosphate-enriched seawater, and model wastewater was studied using amorphous zirconium hydroxide, ZrO(OH)2(Na2O)0.05 1.5H2O, as an adsorbent. Batch experiments were carried out to investigate the adsorption of phosphate. The effect of pH on phosphate adsorption from seawater showed that the uptake of phosphate increased with an increase in pH up to 6, and then decreased sharply with a further increase in pH of the solution. The equilibrium data of phosphate adsorption were followed with a Freundlich isotherm. The uptake of phosphate at the adsorbent/solution ratio 0.05 g/2 L was 10 and 17 mg-P/g for the phosphate-enriched seawater and the model wastewater, respectively. A much higher adsorptivity toward phosphate ions in seawater was observed on ZrO(OH)2(Na2O)0.05 1.5H(2)O than on other representative adsorbents based on layered double hydroxides of Mg(II)-Al(III), Mg(II)-Fe(III), and Ni(II)-Fe(III). The effective desorption of phosphate ions on ZrO(OH)2(Na2O)0.05 1.5H2O could be achieved using a 0.1 M NaOH solution. The usefulness of experimental data for practical applications in removing phosphate in seawater and wastewater is discussed.  相似文献   

2.
We synthesized Zr(4+) incorporated MgAl-layered double hydroxides, Mg(AlZr)-LDH(A) (where A denotes a counteranion in the interlayer space and is expressed as CO(3) for carbonate and Cl for chloride ions), with different molar ratios of Mg/(Al+Zr). Then we characterized their uptake behavior toward phosphate ions. CO(3)-type tertiary LDH materials synthesized at room temperature show low crystallinity, whereas the highly crystalline Cl-type tertiary LDH, [Mg(0.68)Al(0.17)Zr(0.14)(OH)(2)][Cl(0.26)(CO(3))(0.04)1.24H(2)O], was synthesized for the first time using a hydrothermal treatment at 120 degrees C. The distribution coefficients (K(d)) of oxo-anions were measured with a mixed solution containing trace amounts of the anions. The selectivity sequences were Cl(-), NO(-)(3)相似文献   

3.
Phosphate adsorption on synthetic goethite and akaganeite   总被引:8,自引:0,他引:8  
Low crystalline iron hydroxides such as goethite (alpha-FeOOH) and akaganeite (beta-FeOOH) were synthesized, and the selective adsorption of phosphate ions from phosphate-enriched seawater was examined. The results of the distribution coefficients (K(d)) of oxoanions in mixed anion solutions at pH 8 follow the selectivity order Cl-, NO3-, SO4(2-) < CO3(2-), HPO4(2-) for goethite, and Cl-, CO3(2-) < NO3- < SO4(2) < HPO4(2-) for akaganeite. In seawater, both adsorbents show high selectivity for phosphate ions despite the presence of large amounts of major cations and anions in seawater. The adsorption isotherms fitted better with the Freundlich equation and the maximum uptake of phosphate from phosphate-enriched seawater was 10 mg P/g at an equilibrium phosphate concentration of 0.3 mg P/L on both adsorbents. The phosphate adsorption/desorption cycles show that akaganeite is an excellent adsorbent even after 10 cycles and its chemical stability is good.  相似文献   

4.
Removal of Phenol by Using Montmorillonite,Clinoptilolite and Hydrotalcite   总被引:1,自引:0,他引:1  
This work is to study the removal of phenol from aqueous solutions by adsorption using three different adsorbents, clinoptilolite, montmorillonite, and hydrotalcite (HT). Except for montmorillonite, the other adsorbents were treated. Clinoptilolite was modified using cetyltrimethylammonium bromide (CTAB) and hydrotalcite was calcined by heating to 550C. Adsorption isotherms of phenol on all of the mentioned adsorbents was determined by using the batch equilibration technique and indicated that, the adsorption behavior could be modelled by using the Modified Freundlich equation. The differences observed in the isotherms were explained by the variations in adsorbent-adsorbate interactions under the effects of the different surface structures of adsorbents and the pH dependent ionization behavior of phenol. Calcined hydrotalcite (HTC) was found to be the best among the studied adsorbents since it can adsorb 52% of phenol from a solution containing initially 1 g/L phenol for the 1/100 adsorbent solution ratio while the others can adsorb only 8% of phenol for the same concentration and adsorbent solution ratio.  相似文献   

5.
The use of waste or natural resources is an interesting approach to preparing adsorbent materials. Most adsorption materials are powder-based, making them impractical for a variety of applications. In this work, the natural kaolin clay and hydroxyapatite synthesized from biogenic waste were studied as defluoridation materials. The point of zero charge (pHPZC), the fluoride adsorption capability and the adsorption isotherm of calcined kaolin and mixed calcined kaolin/hydroxyapatite in both powdered and moulded forms were investigated. The hardness of the moulded (post-formed) samples was tested before and after in immersion in a fluoride solution. The maximum hardness was 15.8 kilo-pounds for the post-formed calcined kaolin sample. Sample hardness values slightly decreased after immersion in a fluoride solution due to the formation of micro-cracks. Most samples presented high pHPZC values, implying that these materials are suitable for the capture of fluoride anions. The adsorption properties varied with the ratio of calcined kaolin to hydroxyapatite. These properties for post-formed samples were different from those in powdered form. Post-formed samples showed higher fluoride adsorption. The maximum fluoride adsorption capacity and efficiency of the post-formed samples (calcined kaolin) at pH 3 were 1.74 F? mg/g and 87%, respectively. The sorption of fluoride of hydroxyapatite and mixed calcined kaolin/hydroxyapatite powders was found to have the form of the Langmuir isotherm, which indicates a monolayer adsorption on the adsorbent surface. Isotherms of calcined kaolin powder, post-formed calcined kaolin and mixed calcined kaolin/hydroxyapatite samples followed the Freundlich isotherm, which indicates multilayer adsorption on a heterogenous adsorbent surface.  相似文献   

6.
The study of the adsorption/desorption mechanism of phosphate anions at Pt(111) in acidic solution of pH 4.3 and 0.8 was performed by the potential step method in order to reveal the kinetics of anion adsorption. The current-time curve due to phosphate adsorption/desorption showed various decay features, being dependent on the potential region. The rate of current decay depended on pH, being faster in a lower pH solution. Specific adsorption processes were analyzed by the Langmuir and Elovich adsorption equations and also in terms of a two-dimensional nucleation-growth mechanism in different adsorption/desorption regions. In the case of adsorption in 0.3M phosphate buffer solution of pH 4.3, random adsorption without interaction following the Langmuir adsorption, takes place at low coverage, while random adsorption with repulsive force was observed at high coverage. In the desorption process, random desorption with repulsive force takes place at high coverage, and the repulsive force disappears where random adsorption without interaction takes place at medium coverage. When the surface coverage becomes further lower, the desorption mechanism changes dramatically into a two-dimensional nucleation-growth type, suggesting that an ordered adsorbate structure is formed after a rapid discharge process of anion adsorption.  相似文献   

7.
Fluoride contamination of water is a problem worldwide and has caused great concern. Our study focused on the removal of fluorides from aqueous solutions using newly prepared and regenerated activated alumina. To obtain a suitable adsorbent, industrial boehmite was calcined from 573 K to 1473 K and the sample was characterized. The X-ray diffraction patterns showed that the sample was transformed to γ-alumina (activated alumina) at temperatures from 773 K to 1173 K, and the BET dates showed that the specific surface area of the sample decreased gradually from the temperature of 773 K to 1173 K. In our study, the activated alumina calcined from 773 K to 973 K was selected as the defluoridation adsorbent, and dynamic adsorption was employed for the removal of fluorides from aqueous solutions. The breakthrough curves demonstrated that the adsorption capacity of the adsorbent decreased with increasing calcination temperature. To investigate the effect of initial fluoride concentration on the adsorption capacity, 15 mg·L-1, 20 mg·L-1, and 25 mg·L-1 fluoride solutions were selected as the initial aqueous fluoride solution. As a result, the capacity of the adsorbent increased gradually with the increase in the initial fluoride concentration. In order to improve the capacity, we also studied the regeneration process in our experiment. When the activated alumina was saturated by the fluorides, it was regenerated with a NaOH solution (pH = 13.0, 13.3, 13.5) and activated with a HCl solution (0.1 mol·L-1). By a comparison of the five desorption and Al3+ dissolution rates during the regeneration process, it was determined that the NaOH solution with pH 13.0 was the most suitable desorption agent. An analysis of the nitrogen adsorption-desorption isotherm showed that its sharpness was almost unchanged after regeneration, which indicated that the pore structure of the adsorbent was not destroyed during this process. The change in the specific surface area and isoelectric point for the five-times regenerated adsorbent were important impact factors for fluoride adsorption. The specific surface area of the regenerated adsorbent increased, and the study of the zeta potential demonstrated that the isoelectric point also increased after regeneration. To observe the adsorption effect of regenerated activated alumina, we performed an adsorption experiment after each regeneration. The breakthrough curves demonstrated that the regenerated activated alumina exhibited faster saturation and increased adsorption capacity compared to fresh activated alumina. To elucidate the adsorption mechanism, IR spectroscopy was employed to characterize the O―H band of the adsorbent. The change in the Al―O―H content of the activated alumina during regeneration was the main factor impacting the fluoride adsorption capacity of the activated alumina.  相似文献   

8.
In this study, ammonium-functionalized MCM-48 (Mobil Composite Material No. 48) was used as an adsorbent to remove nitrate (NO(-)(3)) and monobasic phosphate (H(2)PO(-)(4)) anions from aqueous solutions. The effects of operating conditions such as temperature, adsorbent loading, initial anion concentration, pH, and the presence of competitive ions on the adsorption performances were examined. Results showed that adsorption capacity decreased with increasing temperature. The adsorption capacity increased with adsorbent loading and initial anion concentration. The removal of nitrate was maximum at pH<8, while phosphate removal was maximized at pH 5. The adsorption was almost unaffected by the presence of competitive ions in the case of phosphate anions. However, their presence adversely affected nitrate adsorption. Desorption of both anions was rapidly achieved within 10 min using NaOH at 0.01 M. Regeneration tests showed that the adsorbent retained its capacity after 5 adsorption-desorption cycles.  相似文献   

9.
Batch studies have been carried out in the removal of Hg(II) from aqueous solutions by using well-synthesized and -characterized hydrous manganese oxide (HMO) and hydrous tin oxide (HTO) employing a radiotracer technique. Results obtained reveal that increased sorptive concentration (10(-8)-10(-2) mol dm(-3)), temperature (298-328 K), and pH (ca. 2.0-10.5) enhance the removal efficiency of these solids. First-order uptake of Hg(II) on HMO and HTO follows the Freundlich adsorption isotherm for entire concentration range. Positive values of DeltaH0 for the uptake process on both solids indicate endothermic uptake and desorption experiments point to irreversible uptake. Radiation stability of the adsorbents has also been assessed using a 300-mCi (Ra-Be) neutron source having an integral neutron flux of 3.85 x 10(6) N cm(-2) s(-1) and associated with a nominal gamma-dose of ca. 1.72 Gy/h.  相似文献   

10.
Elevated-temperature pressure swing adsorption is a promising technique for producing high purity hydrogen and controlling greenhouse gas emissions. Thermodynamic analysis indicated that the CO in H_2-rich gas could be controlled to trace levels of below 10 ppm by in situ reduction of the CO_2 concentration to less than 100 ppm via the aforementioned process. The CO_2 adsorption capacity of potassiumpromoted hydrotalcite at elevated temperatures under different adsorption(mole fraction, working pressure) and desorption(flow rate, desorption time, steam effects) conditions was systematically investigated using a fixed bed reactor. It was found that the CO_2 residual concentration before the breakthrough of CO_2 mainly depended on the total amount of purge gas and the CO_2 mole fraction in the inlet syngas.The residual CO_2 concentration and uptake achieved for the inlet gas comprising CO_2(9.7 mL/min) and He(277.6 mL/min) at a working pressure of 3 MPa after 1 h of Ar purging at 300 mL/min were 12.3 ppm and0.341 mmol/g, respectively. Steam purge could greatly improve the cyclic adsorption working capacity, but had no obvious benefit for the recovery of the residual CO_2 concentration compared to purging with an inert gas. The residual CO_2 concentration obtained with the adsorbent could be reduced to 3.2 ppm after 12 h of temperature swing at 450 °C. A new concept based on an adsorption/desorption process, comprising adsorption, steam rinse, depressurization, steam purge, pressurization, and high-temperature steam purge, was proposed for reducing the steam consumption during CO/CO_2 purification.  相似文献   

11.
Phosphate removal from aqueous solution was investigated using ZnCl2-activated carbon developed from coir pith, an agricultural solid waste. Studies were conducted to delineate the effect of contact time, adsorbent dose, phosphate concentration, pH, and temperature. The adsorption equilibrium data followed both Langmuir and Freundlich isotherms. Langmuir adsorption capacity was found to be 5.1 mg/g. Adsorption followed second-order kinetics. The removal was maximum in the pH range 3–10. pH effect and desorption studies showed that adsorption occurred by both ion exchange and chemisorption mechanisms. Adsorption was found to be spontaneous and endothermic. Effect of foreign ions on adsorption shows that perchlorate, sulfate, and selenite decreased the percent removal of phosphate.  相似文献   

12.
The adsorption of Co2+, Ni2+, Cu2+, and Zn2+ onto amorphous hydrous manganese dioxide (delta-MnO2) has been studied using two methods, viz., isotherms at constant pH in the presence of buffer solution and pH variation in the absence of buffer solution from a fixed metal ion concentration. While the adsorption isotherm experiments were carried out in 0.5 M NaCl only, pH variation or batch titration experiments were carried out in 0.5 M NaCl, 0.01 M NaCl, and 0.01 M KNO3 solutions. The complex nature of adsorption isotherms at constant pH values indicates that adsorption of all the cations is non-Langmuirian (Freundlich) and takes place on the highly heterogeneous oxide surface with different binding energies. The proton stoichiometry derived from isotherms at two close pH values varies between 0.3 and 0.8. The variation of fractional adsorption with pH indicates that the background electrolyte solution influences the adsorption of cations through either metal-like or ligand-like complexes with Cl-, the former showing a low adsorption tendency. The proton stoichiometry values derived from the Kurbatov-type plot varies not only with the electrolyte solution but also with the adsorbate/adsorbent ratio. The variation of fractional adsorption with pH can be modeled either with the formation of the SOM+ type or with a combination of SOM+ and SOMOH type complexes, depending upon the cation and electrolyte medium. The equilibrium constants obtained from Kurbatov-type plots are found to be most suitable in these model calculations. Adsorption calculated on the basis of ternary surface metal-chlorocomplex formation exhibits very low values.  相似文献   

13.
The adsorption equilibrium, kinetics, and thermodynamics of removal of 2,4-dichlorophenoxy-acetic acid (2,4-D) from aqueous solutions by a calcined Zn-Al layered double hydroxide incorporated with Zr(4+) were studied with respect to time, temperature, pH, and initial 2,4-D concentration. Zr(4+) incorporation into the LDH was used to enhance 2,4-D uptake by creating higher positive charges and surface/layer modification of the adsorbent. The LDH was capable of removing up to 98% of 2,4-D from 5 to 400 ppm aqueous at adsorbent dosages of 500 and 5000 mg L(-1). The adsorption was described by a Langmuir-type isotherm. The percentage 2,4-D removed was directly proportional to the adsorbent dosage and was optimized with 8% Zr(4+) ion content, relative to the total metals (Zr(4+)+Al(3+)+Zn(2+)). Selected mass transfer and kinetic models were applied to the experimental data to examine uptake mechanism. The boundary layer and intra-particle diffusion played important roles in the adsorption mechanisms of 2,4-D, and the kinetics followed a pseudo-second order kinetic model with an enthalpy, ΔH(ads) of -27.7±0.9 kJ mol(-1). Regeneration studies showed a 6% reduction in 2,4-D uptake capacity over six adsorption-desorption cycles when exposed to an analyte concentration of 100 ppm.  相似文献   

14.
Removal of phosphate by aluminum oxide hydroxide   总被引:17,自引:0,他引:17  
The development and manufacture of an adsorbent to remove phosphate ion for the prevention of eutrophication in lakes are very important. The characteristics of phosphate adsorption onto aluminum oxide hydroxide were investigated to estimate the adsorption isotherms, the rate of adsorption, and the selectivity of adsorption. Phosphate was easily adsorbed onto aluminum oxide hydroxide, because of the hydroxyl groups. The adsorption of phosphate onto aluminum oxide hydroxide was influenced by pH in solution: the amount adsorbed was greatest at pH 4, ranging with pH from 2 to 9. The optimum pH for phosphate removal by aluminum oxide hydroxide is 4. The selectivity of phosphate adsorption onto aluminum oxide hydroxide was evaluated based on the amount of phosphate ion adsorbed onto aluminum oxide hydroxide from several anion complex solutions. It is phosphate that aluminum oxide hydroxide can selectively adsorb. The selectivity of phosphate onto aluminum oxide hydroxide was about 7000 times that of chloride. This result indicated that the hydroxyl groups on aluminum oxide hydroxide have selective adsorptivity for phosphate and could be used for the removal of phosphate from seawater.  相似文献   

15.
将5-氨基水杨酸接枝到PGMA/SiO2微粒的聚甲基丙烯酸缩水甘油酯(PGMA)大分子链上,成功制备了一种新型螯合吸附材料ASA-PGMA/SiO2。采用静态法研究了ASA-PGMA/SiO2对重金属离子Cu2+、Cd2+、Zn2+、Pb2+的吸附性能,结果表明其对Cu2+、Cd2+、Zn2+、Pb2+具有很强的螯合吸附能力,吸附容量分别可以达到0.42、0.40、0.35、0.31mmol/g。体系的pH对吸附容量影响较大,吸附行为服从Langmuir和Freundlich吸附模型。使用0.1mol/L的盐酸溶液就可实现重金属离子的解吸。通过反复吸附-解吸实验证明ASA-PGMA/SiO2具有良好的重复使用性能。  相似文献   

16.
本文基于介孔材料具有均一可调的孔径结构、高比表面积以及稳定的骨架,利用硅藻土作为硅源,CTAB(十六烷基三甲基溴化铵)为模板剂,掺杂聚丙烯酸,制备了杂化的功能介孔材料MCM-41-PAA,采用FT-IR、XRD、氮气吸脱附、SEM等手段对该介孔材料的组成、结构与形貌进行了表征,并利用所制备的功能吸附剂MCM-41-PAA对Hg(Ⅱ)进行了吸附研究,探讨了吸附剂的用量、Hg(Ⅱ)初始浓度、pH值和吸附时间等因素对Hg(Ⅱ)离子吸附效果的影响。研究表明:当吸附剂的用量、Hg(Ⅱ)浓度、pH和吸附时间分别为0.2g、300mg/L、4和180min时,对应的吸附量达到132mg/g。  相似文献   

17.
Recently composite metal oxides have gained significant attention to be used as adsorbent because of their synergetic effects. Particularly Manganese containing composite oxides are useful for removal of inorganic oxyacids such as phosphate or arsenate. In present study fabrication of Mn-Zn-Ti Oxide adsorbent for phosphate removal carried out via co precipitation method. Surface properties deduced by TEM, FESEM, EDAX and XRD, revealed nanosized composite material has a porous nature constitute of alloy type mixing of the metals. Size of the nanocomposite found to be as small as 6?nm. Adsorption capacity for phosphate estimated at different pH, time and adsorbent dose by batch mode. In addition desorption properties and thermodynamic study also carried out. Several isotherms and kinetic models applied to observe adsorption properties of the Mn-Zn-Ti Oxide nanocomposite. Adsorption capacity found to be 151?mg/g at pH 6, time 90?min, adsorbent dose 0.20?g/L and phosphate concentration of 200?mg/L. Adsorption data fitted to second order kinetics and Freundlich isotherm. Formation of complex between nanocomposite and phosphate predicted from FTIR and supported by pH kinetic and isotherm studies. Desorption and reusability found to be well maintained over five cycles.  相似文献   

18.
The pH value in the gel-sol system for the preparation of uniform anatase TiO2 nanoparticles, as a decisive factor for controlling the size and shape of the final product, was found to be significantly changed during the formation process of the anatase TiO2 particles from a condensed Ti(OH)4 gel. The dramatic evolution of pH with the progress of the synthetic process has clearly been explained in terms of the adsorption and desorption of a hydroxide ion (OH-) ora proton (H+) on the solids transforming with time. The adsorption and desorption of OH- or H+ were enhanced by the presence of an inert electrolyte such as NaClO4, as explained by its shielding effect on the electrical interactions between the electrically charged precipitates and free OH- and H+ ions. The electrolyte also hampered the phase transformation of Ti(OH)4 precipitate to anatase TiO2. This effect of electrolytes was explained in terms of the inhibited nucleation of anatase TiO2 by enhanced adsorption of OH- ions toTiO2 embryos. The points of zero charge (PZC) of the amorphous Ti(OH)4 precipitate and the anatase TiO2 particles at 25 degrees C were obtained from the change in pH associated with the adsorption and desorption of OH- or H+, i.e., 4.6 for Ti(OH)4 precipitate and 6.0 for anatase TiO2 in the presence of 0.1 mol dm(-3) NaClO4. The PZCof the Ti(OH)4 precipitate measured at 25 degrees C after additional aging at 100 degrees C for 30 min was shifted to 4.1, owing to the promoted adsorption of OH-.  相似文献   

19.
腐植酸对砷的吸附作用研究   总被引:4,自引:0,他引:4  
腐植酸中含有大量的极性基团,对金属离子有较强的吸附性能。运用氢化物-原子荧光光谱法,以泥炭腐植酸为原料,研究了腐植酸对砷(V)离子的吸附作用和腐植酸吸附剂中砷的回收,并得出了最佳的吸附和脱附条件。实验考察了酸度、时间分别对吸附和脱附的影响。结果表明,泥炭腐植酸对砷吸附的最佳模型为Freundlich吸附方程,当溶液成中性时腐植酸对砷的吸附量较大且趋于平稳。砷的浓度为1μg/mL,溶液的pH值为7,吸附时间控制在55min时,吸附效果最佳,最大吸附率为85.49%。脱附的最佳条件为:pH值14,脱附时间20min。  相似文献   

20.
Calcium lignosulfonate adsorption and desorption on Berea sandstone   总被引:3,自引:0,他引:3  
This paper describes adsorption and desorption studies carried out with calcium lignosulfonate (CLS) on Berea sandstone. Circulation experiments were performed to determine CLS adsorption isotherms and the effects of CLS concentration, temperature, salinity, brine hardness, and injection rate on adsorption density. Flow-through experiments were performed to assess the reversibility of CLS adsorption and the influence of postflush rate, brine concentration, brine hardness, brine pH, and temperature on the desorption process. Results indicate that CLS adsorption isotherms on Berea sandstone follow the Freundlich isotherm law. The results presented in this paper on the effects of CLS adsorption and desorption on Berea sandstone show that: (1) increasing CLS concentration and salinity increases CLS adsorption density; (2) increasing temperature will decrease adsorption density; (3) increasing injection rate of CLS solution will slightly decrease CLS adsorption density; (4) postflush rate and salinity of brine have a large impact on the CLS desorption process; (5) the adsorption and desorption process are not completely reversible; and (5) temperature and pH of the postflush brine have little effect on desorption.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号