首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 34 毫秒
1.
刘立君  赵军明 《计算物理》2013,30(1):120-126
推导多维梯度折射率介质内稳态辐射传递的扩散近似方程.使用有限元法对扩散近似进行离散和求解,利用两个二维半透明介质的稳态辐射传递问题验证该扩散近似的精度及适用性.算例考虑介质为均匀折射率及梯度折射率两种情况.利用扩散近似分别求解辐射平衡时的边界热流、介质内温度场分布,并与辐射传递方程的求解结果进行对比分析.结果表明:介质折射率变化、散射特性、光学厚度及散射反照率均直接影响扩散近似的精度;在光学厚及强散射条件下,该扩散近似可以作为一种快速算法应用于梯度折射率介质稳态辐射传递的求解.  相似文献   

2.
Cong W  Cong A  Shen H  Liu Y  Wang G 《Optics letters》2007,32(19):2837-2839
We present a generalized delta-Eddington phase function to simplify the radiative transfer equation to an integral equation with respect to the photon flux vector. The solution of the integral equation is highly accurate to model the photon propagation in the biological tissue over a broad range of optical parameters, especially in the visible light spectrum where the diffusion approximation breaks down. The methodology is validated in the Monte Carlo simulation and can be applied in various optical imaging applications.  相似文献   

3.
The first two terms in the spherical-harmonic expansion (the P(1) approximation) of the radiative transfer equation yield the diffusion equation. This approximation applies to multiple scattering and results in a solution for the energy density, the gradient of which is proportional to the light intensity. In this work a higher-order spherical-harmonic expansion of the radiative transfer equation is developed. This equation applies to the radiant intensity rather than the energy density. The equation can be decomposed into two terms: a propagator term obtained from the determinant of the coupled equations describing the individual components of the intensity, and a mixing matrix that describes the cross coupling between different orders of the expansion. Using the Fourier transform, an approximation based on expanding at small wave vectors k leads to an equation similar to the diffusion equation. The equation is expected to predict the intensity for multiple scattering at earlier times and shorter distances than the diffusion equation can. The notion of an equivalent wave field is introduced.  相似文献   

4.
Liemert A  Kienle A 《Optics letters》2011,36(20):4041-4043
In this study, the third-order simplified spherical harmonics equations (SP3), an approximation of the radiative transfer equation, are solved for a semi-infinite geometry considering the exact simplified spherical harmonics boundary conditions. The obtained Green's function is compared to radiative transfer calculations and the diffusion theory. In general, it is shown that the SP3 equations provide better results than the diffusion approximation in media with high absorption coefficient values but no improvement is found for small distances to the source.  相似文献   

5.
The radiative transfer equation can be utilized in optical tomography in situations in which the more commonly applied diffusion approximation is not valid. In this paper, an image reconstruction method based on a frequency domain radiative transfer equation is developed. The approach is based on a total variation output regularized least squares method which is solved with a Gauss–Newton algorithm. The radiative transfer equation is numerically solved with a finite element method in which both the spatial and angular discretizations are implemented in piecewise linear bases. Furthermore, the streamline diffusion modification is utilized to improve the numerical stability. The approach is tested with simulations. Reconstructions from different cases including domains with low-scattering regions are shown. The results show that the radiative transfer equation can be utilized in optical tomography and it can produce good quality images even in the presence of low-scattering regions.  相似文献   

6.
A new numerical method is presented for solving the general equation of radiative transfer. The approximation, which replaces the integral term over angle in the transfer equation by a quadrature sum, is studied; an estimate of the error involved is obtained and this error, which may be thought of as a further source or sink of photons (depending upon the sign), can then be used to evaluate a corection to the radiation field originally determined. This process may then be continued as a perturbation series. The method is found to give a final solution, when starting from the Eddington approximation, at least as accurate as that obtained using variable Eddington factors. Furthermore, the technique involves very little extra computing over that required using the Eddington approximation, and may be trivially generalized to any radiative transfer problem. It can also be used in conjunction with any of the existing methods for solving the equation of transfer. Examples are given in the context of spectral line formation in slab geometry.  相似文献   

7.
The equation for free-space propagation of the generalized radiance defined formerly by the authors in terms of the coherent-mode representation of the cross-spectral density function is derived within the accuracy of the paraxial approximation. It is shown that, in the short-wavelength limit, this generalized radiance obeys in a good approximation the fundamental radiative transfer law of classical radiometry.  相似文献   

8.
Xu M  Cai W  Lax M  Alfano RR 《Optics letters》2001,26(14):1066-1068
A photon-transport forward model for image reconstruction in turbid media is derived that treats weak inhomogeneities through a Born approximation of the Boltzmann radiative transfer equation. This model can conveniently replace the commonly used diffusion approximation in optical tomography. An analytical expression of the background Green's function is obtained from the cumulant solution of the Boltzmann equation. Our model provides the correct behavior of photon migration at early times and reduces at long times to the center-moved diffusion approximation. Numerical comparisons between this model and the standard and center-moved diffusion models are presented.  相似文献   

9.
The diffusion model that is an approximation of the equation of radiation transfer is typically used to describe photon migration in scattering-dominant media. In general biological tissue is highly scattering and very weakly absorbing against near-infrared light, yet it is heterogeneous and may contain relatively highly absorbing or low-scattering regions. Here applicability of the diffusion approximation over the radiative transfer theory for describing ultrafast laser transport in biological tissues is numerically studied and investigated over different kinds of tissue conditions and geometries. Tissues having tumors of different sizes, locations and nature as well as dual-tumor and low-scattering conditions are considered. Radiation transfer analysis is taken as a comparison objective and it is initially proved to be accurate in benchmark comparisons with Monte Carlo simulation. The results predict systematically about the compatible conditions where and when we can use the diffusion approximation and the conditions in which the diffusion approximation may provide misleading results.  相似文献   

10.
11.
The coupled radiative transport-diffusion model can be used as light transport model in situations in which the diffusion equation is not a valid approximation everywhere in the domain. In the coupled model, light propagation is modelled with the radiative transport equation in sub-domains in which the approximations of the diffusion equation are not valid, such as within low-scattering regions, and the diffusion approximation is used elsewhere in the domain. In this paper, an image reconstruction method for diffuse optical tomography based on using the coupled radiative transport-diffusion model is developed. In the approach, absorption and scattering distributions are estimated by minimising a regularised least-squares error between the measured data and solution of the coupled model. The approach is tested with simulations. Reconstructions from different cases including domains with low-scattering regions are shown. The results show that the coupled radiative transport-diffusion model can be utilised in image reconstruction problem of diffuse optical tomography and that it produces as good quality reconstructions as the full radiative transport equation also in the presence of low-scattering regions.  相似文献   

12.
The main goal of this paper is to give a rigorous derivation of the generalized form of the direct (also referenced as forward) and adjoint radiative transfer equations. The obtained expressions coincide with expressions derived by Ustinov [Adjoint sensitivity analysis of radiative transfer equation: temperature and gas mixing ratio weighting functions for remote sensing of scattering atmospheres in thermal IR. JQSRT 2001;68:195-211]. However, in contrast to [Ustinov EA. Adjoint sensitivity analysis of radiative transfer equation: temperature and gas mixing ratio weighting functions for remote sensing of scattering atmospheres in thermal IR. JQSRT 2001;68:195-211] we formulate the generalized form of the direct radiative transfer operator fully independent from its adjoint. To illustrate the application of the derived adjoint radiative transfer operator we consider the angular interpolation problem in the framework of the discrete ordinate method widely used to solve the radiative transfer equation. It is shown that under certain conditions the usage of the solution of the adjoint radiative transfer equation for the angular interpolation of the intensity can be computationally more efficient than the commonly used source function integration technique.  相似文献   

13.
Low order spherical harmonic (P-N) approximations are applied to a radiative transfer Marshak wave problem. A modified Milne boundary condition is developed for the P-2 approximation, similar to one suggested earlier for the P-1 approximation. Comparison with exact Monte Carlo results suggests that this modified P-2 method may be an accurate and generally applicable differential approximation to the equation of transfer. The Monte Carlo results presented should be useful for testing other approximate formulations of radiative transfer and validating time dependent numerical solution methods for the equation of transfer.  相似文献   

14.
A half-range moment method is presented for solving, in various orders of approximation, a multi-group transport equation subject to generalized boundary conditions in a spherically symmetric geometry. The results for the plane-parallel geometry are obtainable from the present analysis as a special case. The equations and the boundary conditions considered are sufficiently general to characterize a variety of problems in radiative transfer, neutron transport and phonon transport if various coefficients appearing in the equations are properly specified.  相似文献   

15.
The present work analyzes the process of detection of small diffusive inclusions in turbid hosts. Experiments were carried out using a transillumination geometry and continuous wave laser radiation, considering cylindrical inclusions in different environments. A comparison between experimental data, theoretical approaches for the radiative transfer equation in the diffusion approximation, and numerical Monte Carlo simulations, is presented.  相似文献   

16.
Liemert A  Kienle A 《Optics letters》2010,35(20):3507-3509
We derived analytical solutions of the simplified spherical harmonics equations, an approximation of the radiative transfer equation, for infinitely extended scattering media. The derived equations are simple (sum of exponential functions) and quickly evaluated. We compared the solutions with Monte Carlo simulations in the steady-state and time domains and found much better agreement compared to solutions of the diffusion equation, especially for large absorption coefficients, short time values, and small distances from the source.  相似文献   

17.
An approximate numerical method for fast calculations of the radiation heat transfer in a solar thermochemical reactor cavity is formulated based on the separate treatment of the solar and thermal radiative exchange by the diffusion approach. The usual P1 approximation is generalized by applying an equivalent radiation diffusion coefficient for the optically thin central part of the cavity. The resulting boundary-value problems are solved using the finite element algorithm. The accuracy of the model is assessed by comparing the results to those obtained by a pathlength-based Monte Carlo simulation. The applicability of the proposed model is demonstrated by performing calculations for an example problem, which incorporates a range of parameters typical for a solar chemical reactor and the spectral radiative properties of polydisperse zinc oxide particles.  相似文献   

18.
Abstract

A pulse propagation of a vector electromagnetic wave field in a discrete random medium under the condition of Mie resonant scattering is considered on the basis of the Bethe–Salpeter equation in the two-frequency domain in the form of an exact kinetic equation which takes into account the energy accumulation inside scatterers. The kinetic equation is simplified using the transverse field and far wave zone approximations which give a new general tensor radiative transfer equation with strong time delay by resonant scattering. This new general radiative transfer equation, being specified in terms of the low-density limit and the resonant point-like scatterer model, takes the form of a new tensor radiative transfer equation with three Lorentzian time-delay kernels by resonant scattering. In contrast to the known phenomenological scalar Sobolev equation with one Lorentzian time-delay kernel, the derived radiative transfer equation does take into account effects of (i) the radiation polarization, (ii) the energy accumulation inside scatterers, (iii) the time delay in three terms, namely in terms with the Rayleigh phase tensor, the extinction coefficient and a coefficient of the energy accumulation inside scatterers, respectively (i.e. not only in a term with the Rayleigh phase tensor). It is worth noting that the derived radiative transfer equation is coordinated with Poynting's theorem for non-stationary radiation, unlike the Sobolev equation. The derived radiative transfer equation is applied to study the Compton–Milne effect of a pulse entrapping by its diffuse reflection from the semi-infinite random medium when the pulse, while propagating in the medium, spends most of its time inside scatterers. This specific albedo problem for the derived radiative transfer equation is resolved in scalar approximation using a version of the time-dependent invariance principle. In fact, the scattering function of the diffusely reflected pulse is expressed in terms of a generalized time-dependent Chandrasekhar H-function which satisfies a governing nonlinear integral equation. Simple analytic asymptotics are obtained for the scattering function of the front and the back parts of the diffusely reflected Dirac delta function incident pulse, depending on time, the angle of reflection, the mean free time, the microscopic time delay and a parameter of the energy accumulation inside scatterers. These asymptotics show quantitatively how the rate of increase of the front part and the rate of decrease of the rear part of the diffusely reflected pulse become slower with transition from the regime of conventional radiative transfer to that of pulse entrapping in the resonant random medium.  相似文献   

19.
In diffuse optical tomography, light transport theory is used to describe photon propagation inside turbid medium. A commonly used simplification for the radiative transport equation is the diffusion approximation due to computational feasibility. However, it is known that the diffusion approximation is not valid close to the sources and boundary and in low-scattering regions. Fokker-Planck equation describes light propagation when scattering is forward-peaked. In this article a numerical solution of the Fokker-Planck equation using finite element method is developed. Approach is validated against Monte Carlo simulation and compared with the diffusion approximation. The results show that the Fokker-Planck equation gives equal or better results than the diffusion approximation on the boundary of a homogeneous medium and in turbid medium containing a low-scattering region when scattering is forward-peaked.  相似文献   

20.
The line profile coefficients for absorption and emission appearing in the radiative transfer equation are formulated in terms of atomic line profile coefficients and velocity distribution functions. In order to derive the atomic profile coefficients of a multilevel atom, one defines generalized atomic redistribution functions that describe the correlations between photons involved in consecutive radiative transitions of the atom. Besides their dependence on the radiation field, the atomic line profile coefficients of a multilevel atom depend on the velocity distributions of the atoms in the various excitation states, in contrast to the case of a two-level atom where only the radiation intensity but not the velocity distributions affect the atomic emission profile. Closed expressions of the atomic profile coefficients in terms of generalized redistribution functions are obtained if stimulated emissions are neglected, and one is led to an iterative approximation scheme if stimulated emissions are taken into account. The possibility of a nonlocal character of the atomic profile coefficients is pointed out, and the effect of elastic, velocity-changing collisions with excited atoms is discussed. A major aim of this paper is to draw attention to the fact that ordinary redistribution functions that describe only the correlations between the absorbed and reemitted photons in the same spectral line are not sufficient to formulate the line profile coefficients of a multilevel atom.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号