首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Several authors have recently reported the use of micelle polymers, polymer surfactants and dendrimers as pseudo-stationary phases in electrokinetic chromatography. These reports have demonstrated the effectiveness of these phases for a variety of applications, including the separation and analysis of hydrophobic compounds and chiral compounds and the application of mass spectrometric detection. This review covers developments in this area since the first introduction of polymeric pseudo-stationary phases in 1992. The use of polymeric micelles in electrokinetic chromatography is compared briefly with capillary electrochromatography. Some thoughts on future directions in this area are presented.  相似文献   

2.
Palmer CP  McCarney JP 《Electrophoresis》2004,25(23-24):4086-4094
This review concerns the development, characterization, and application of soluble ionic polymeric materials as pseudostationary phases for electrokinetic chromatography since 2002. Cationic polymers, anionic siloxanes, polymerized surfactants (micelle polymers), and chiral polymers are considered. The use of stable suspensions of polymer nanoparticles in electrokinetic chromatography is also reviewed.  相似文献   

3.
Palmer CP 《Electrophoresis》2002,23(22-23):3993-4004
This review article details the development, characterization and application of polymeric materials as pseudostationary phases for electrokinetic chromatography over the past two years. Recent developments in cationic polymers and anionic siloxane, acrylamide and polymerized surfactants (micelle polymers) are reviewed. Also reviewed is recent progress in the development and characterization of chiral polymeric phases for chiral separations by electrokinetic chromatography, and application of a polymeric pseudophase with electrospray ionization mass spectrometric detection.  相似文献   

4.
Recent research and development efforts concerning polymeric pseudostationary phases (PSPs) for electrokinetic chromatography are reviewed. The introduction of new materials, characterization of structural effects on performance and selectivity, applications, and the use of polymeric PSPs with mass spectrometric detection are considered. Very interesting results concerning the effects of polymer structure have been reported. Significant developments have also been reported in the development of novel applications of polymeric PSPs, particularly for sample preconcentration using micellar affinity gradient focusing. The use of mass spectrometric detection with electrokinetic chromatography has seen significant development, and recent reports indicate that this is a robust and sensitive approach.  相似文献   

5.
This article presents an overview on fluorocarbon stationary phases for liquid chromatography (LC) applications. Fluorocarbons developed as alternative reverse phases have revealed previously unknown separation mechanisms and special utilities. Solvophobicity and fluorophilicity of the fluorinated phases provide enhanced selectivity for organofluorine compounds. The dual normal- and reverse-phase characteristics make fluorinated phases suitable for analysis of polar pharmaceutical and biological samples such as proteins, peptides, nucleotides, steroids, and alkaloids. Fluorinated phases for other applications including supercritical fluid chromatography (SFC), micellar electrokinetic liquid chromatography (MEKC), ion chromatography (IC), open tubular electrochromatography (OTEC), and liquid chromatography-mass spectrometry (LC-MS) are also highlighted.  相似文献   

6.
Peric I  Kenndler E 《Electrophoresis》2003,24(17):2924-2934
Although electrochromatography in packed beds or monolithic columns has gained enormous interest, techniques based on charged pseudostationary phases like micelles are of high practical importance in electrically driven separation science. However, nonmicellar alternatives, e.g., using charged soluble polymers or smaller additives are still attractive, as they allow high concentrations of organic solvents, and their application is not limited by the critical micellar concentration. This review discusses the developments in the field of electrokinetic chromatography with these additives in the last three years, covering ionic polymeric pseudostationary phases, dendrimers and so-called micelle polymers, but also small molecules which implement separation selectivity due to their specific interaction with the analytes.  相似文献   

7.
Palmer CP 《Electrophoresis》2000,21(18):4054-4072
Several types of synthetic ionic polymers have been employed as pseudostationary phases in electrokinetic chromatography. The polymers have been shown to have some significant advantages and different chemical selectivity relative to conventional surfactant micelles. Polymeric phases are effective for the separation and analysis of hydrophobic and chiral compounds, and may be useful for the application of mass spectrometric detection. Additionally, the polymeric phases often demonstrate unique selectivity relative to micellar phases, and can be designed and synthesized to provide desired selectivity. This review covers efforts to develop and characterize the performance, characteristics, and selectivity of synthetic polymeric pseudostationary phases since their introduction in 1992. Some ideas for the future development of polymeric pseudostationary phases and the role they may play in electrokinetic separations are presented.  相似文献   

8.
Amphiphilic copolymers of AMPS (2-acrylamido-2-methyl-1-propanesulfonic acid) and hydrophobic monomers with various chemical structures were synthesized, characterized and used as novel electrokinetic chromatography polymeric pseudo-stationary phases, showing significant chemical selectivity differences from that of the conventional monomeric pseudo-stationary phase, sodium lauryl sulphate. Copolymers of AMPS and methacrylates with different pendant chain lengths (C8, C12 and C18) were investigated and no significant difference in chemical selectivity was observed among them. However, the spacer bonding chemistry was shown to contribute to significant chemical selectivity difference, e.g. poly(AMPS-lauryl methacrylate) showed different chemical selectivity from poly(AMPS-lauryl methacrylamide). Linear solvation energy relationship analysis of 20 solutes by eight different polymeric pseudo-stationary phases was employed to investigate the solute molecule structural contributions to the retention. Hydrogen-bonding properties (described by system constants b and a) of poly(AMPS-alkyl methacrylamide) were found stronger than those of poly(AMPS-alkyl methacrylate).  相似文献   

9.
Since the introduction of micelles by Terabe et al. (1984), many different species have been employed as carriers for electrokinetic chromatography. As it is not possible to separate uncharged solutes or ions with equal mobility in capillary electrophoresis, these phases are added to introduce or improve selectivity.

This review surveys the application of particles as pseudo-stationary phases. Up to now only very few applications exist based either on polymer particles for the separation of catechols and primary amines or silica-based material. With these particles separations are shown for phenols, polycyclic aromatic hydrocarbons and naphthalene derivatives. The characteristic properties of particles as pseudo-stationary phases and their benefits as well as their limitations are discussed.  相似文献   


10.
A monolithic stationary phase is the continuous unitary porous structure prepared by in situ polymerization or consolidation inside the column tubing and, if necessary, the surface is functionalized to convert it into a sorbent with the desired chromatographic binding properties [J. Chromatogr. A 855 (1999) 273]. Monolithic stationary phases have attracted considerable attention in liquid chromatography and capillary electrochromatography in recent years due to their simple preparation procedure, unique properties and excellent performance, especially for separation of biopolymers. This review summarizes the preparation, characterization and applications of the monolithic stationary phases. In addition, the disadvantages and limitations of the monolithic stationary phases are also briefly discussed.  相似文献   

11.
T Chen  C P Palmer 《Electrophoresis》1999,20(12):2412-2419
The feasibility of polymeric phases based on a silicone polymer backbone as pseudostationary phases for electrokinetic chromatography has been investigated. Silicone phases were studied because of the range of chemistries that could be developed based on these backbones, and because successful development of silicone phases would make it possible to employ much of the stationary phase chemistry developed in the past thirty years. Three silicone polymer structures have been investigated, but only one had sufficient aqueous solubility to permit application in electrokinetic chromatography. This phase was characterized by a variety of methods and was shown to be a mixture of partially hydrolyzed poly(bis-(3-cyanopropyl) siloxanes. When employed as a pseudostationary phase, this material provided selective and efficient separations. The electrophoretic mobility of the silicone polymer is greater than that of sodium dodecyl sulfate (SDS) micelles and poly(sodium 10-undecenylsulfate), providing an extended migration time range. A striking characteristic of the polymer is that the electrophoretic mobility is greater than typical electroosmotic mobilities. The chemical selectivity of the phase is significantly different from that of SDS micelles or poly(sodium 10-undecenylsulfate). The silicone phase is a more cohesive, basic and polar phase than SDS micelles. In buffers modified with a high concentration of organic solvents, the chromatographic properties of the silicone polymer are inferior to those of the poly(sodium 10-undecenylsulfate). The greatest limitation of silicone polymers for this application appears to be limited aqueous solubility, which will make it difficult to realize a family of such polymers with different chemical selectivities.  相似文献   

12.
Pseudo-stationary phases for electrokinetic chromatography were prepared by the alkylation of starburst dendrimers (SBDs). The SBD-supported pseudo-stationary phase with dodecyl groups showed higher efficiency than short-akyl derivatives, and maintained the hydrophobic property inthe presence of methanol. The dodecyl-modified SBD provided wide migration time windows ar high methanol content to effect the separation of sixteen aromatic hydrocarbons, the priority pollutants designated by EPA, in 65% methanol. The selectivity of polymer-supported pseudo-stationary phase can be varied simply by changing the length of the alkyl groups. The dodecyl SBD showed relatively similar selectivity as sodium dodecyl culfate micelle, whereas short alkyl derivatives showed preference towards rigid and planar compounds based on the rigid and planar compounds based on the rigid polymer backbones. The selectivity of SBD-supported pseudo-stationary phases was dominated by the chain length of the alkyl groups, with the minor effect of the structure of the core and the generation of SBD where alkyl groups were attached.  相似文献   

13.
Qin F  Xie C  Yu Z  Kong L  Ye M  Zou H 《Journal of separation science》2006,29(10):1332-1343
Monolithic materials have become a well-established format for stationary phases in the field of capillary electrochromatography. Four types of monoliths, namely particle-fixed, silica-based, polymer-based, and molecularly imprinted monoliths, have been utilized as enantiomer-selective stationary phases in CEC. This review summarizes recent developments in the area of monolithic enantiomer-selective stationary phases for CEC. The preparative procedure and the characterization of these columns are highlighted. In addition, the disadvantages and limitations of different monolithic enantiomer-selective stationary phases in CEC are briefly discussed.  相似文献   

14.
聚合物在胶束电动色谱中的应用   总被引:1,自引:0,他引:1  
本文回顾了自1992 年聚合物第一次被用作胶束电动色谱准固定相以来聚合胶束、聚合物表面活性剂和枝状高分子在这方面的研究进展, 并与常用表面活性剂的性能进行了对比。  相似文献   

15.
This review summarizes the variety of stationary phases that have been employed for capillary electrochromatography (CEC) separations. Currently, about 70% of reported CEC research utilizes C18 stationary phases designed for liquid chromatography, but an increasing number of new materials (e.g., ion-exchange phases, sol-gel approaches, organic polymer continuous beds) are under development for use in CEC. Novel aspects of these different materials are discussed including the ability to promote electroosmotic flow, phase selectivity and activity for basic solutes. In addition, new column designs (polymer continuous beds and silica-sol-gel monoliths) are described.  相似文献   

16.
This review article describes some general comments on micellar electrokinetic chromatography (MEKC) from the viewpoint of pseudo-stationary phases and presents a compiled list of surfactants used for MEKC, prepared from published papers. We tried to give comments on some typical surfactants from the practical point of view.  相似文献   

17.
Palmer CP 《Electrophoresis》2007,28(1-2):164-173
This review concerns the introduction, characterization, and application of polymeric pseudostationary phases (PSPs) for EKC since 2004. Achiral and chiral polymers and separations are reviewed, as is the application of polymeric PSPs for the combination of EKC with mass spectrometric detection.  相似文献   

18.
Monolithic columns for capillary electrochromatography are receiving quite remarkable attention. This review summarizes results excerpted from numerous papers concerning this rapidly growing area with a focus on monoliths prepared from synthetic polymers. Both the simplicity of the in situ preparation and the large number of readily available chemistries make the monolithic separation media a vital alternative to capillary columns packed with particulate materials. Therefore, they are now a well-established stationary phase format in the field of capillary electrochromatography. A wide variety of synthetic approaches as well as materials used for the preparation of the monolithic stationary phases are presented in detail. The analytical potential of these columns is demonstrated with separations involving various families of compounds and different chromatographic modes.  相似文献   

19.
Polyacrylic acid (PAA) and polymethacrylic acid (PMAA) with carboxyl groups partially blocked by dodecyltrimethylammonium bromide (DTAB) and tetrabutylammonium bromide (TBAB) were tested as new pseudo-stationary phases in micellar electrokinetic chromatography (MEKC). The separation of was examined using PAA and PMAA. Excellent resolution of the substituted phenols and derivatized amino acids was demonstrated using additives of PAA-DTAB polyelectrolyte complex in the running phosphate buffer. It was found that the capacity factors were proportional to the concentration of the complex PAA/DTAB. Critical micelle concentration was effectively zero. It was found that the migration times and efficiency of separation of phenols and derivatives of amino acids depended on the type of polymers and alkyltrimethylammonium salts used.  相似文献   

20.
介绍了含极性基团硅质高效液相色谱固定相的研究进展,对反相固定相的合成、极性基团作用机理和色谱性质方面作了评述,对手性分离固定相和高效离子色谱固定相方面的进展也作了简单综述。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号