首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 890 毫秒
1.
Methyl 1-aryl-3-benzoyl-4,5-dioxo-4,5-dihydro-1H-pyrrole-2-carboxylates reacted with 6-amino-1,3-dimethylpyrimidine-2,4(1H,3H)-dione to give methyl 11-aryl-12-benzoyl-9-hydroxy-4,6-dimethyl-3,5,10-trioxo-4,6,8,11-tetraazatricyclo[7.2.1.02,7]dodec-2(7)-ene-1-carboxylates which underwent thermal recyclization to 1-aryl-3-benzoyl-4-hydroxy-1′,3′-dimethylspiro[pyrrole-2,5′-pyrrolo[2,3-d]pyrimidine]-2′,4′,5,6′(1H,1′H,3′H,7′H)-tetraones.  相似文献   

2.
There has been considerable interest in the coordination chemistry of linear and macrocyclic amides(1). Deprotonation of the amide nitrogen is known to occur with various metal ions and the sites of coordination are generally considered to be the carbonyl oxygen prior to deprotonation and the amide nitrogen after deprotonation. However, oxygen binding has generally been inferred from indirect evidence(2,3). We now report the results of some studies on the interaction of copper(II) with a series of 2-carbamoylethyl derivatives of linear diamines, namelyN,N′-bis(2-carbamoylethyl)ethylenediamine (1),N,N,N′,N′-tetrakis(2-carbamoylethyl)ethylenediamine (2)N,N′-bis(2-carbamoylethyl)trimethylenediamine (3) andN,N,N′,N′-tetrakis(2-carbamoylethyl)trimethylenediamine (4) which confirm carbonyl oxygen binding prior to amide deprotonation.  相似文献   

3.
N,N′-bis(salicylidene)-1,3-propanediamine (LH2), N,N′-bis(salicylidene)-2,2′-dimethyl-1,3-propanediamine (LDMH2), N,N′-bis(salicylidene)-2-hydroxy-1,3-propanediamine (LOH3), N,N′-bis(2-hydroxyacetophenylidene)-1,3-propanediamine (LACH2) and N,N′-bis(2-hydroxyacetophenone)-2,2′-dimethyl-1,3-propanediamine (LACDMH2) were synthesized and reduced to their phenol-amine form in alcoholic media using NaBH4 (LHH2, LDMHH2, LOHHH2, LACHH2 and LACDMHH2). Heterodinuclear complexes were synthesized using Ni(II), Zn(II) and Cd(II) salts, according to the template method in DMF media. The complex structures were analyzed using elemental analysis, IR spectroscopy, and thermogravimetry. Suitable crystals of only one complex were obtained and its structure determined using X-ray diffraction, NiLACH·CdBr2·DMF2, space group orthorhombic, Pbca, a=20.249, b=14.881, c=20.565 ? and Z=8. The heterodinuclear complexes were seen to be of [Ni·ligand·MX2·DMF2] structure (ligand=LH2−, LDMH2−, LOHH2−, LACH2−, LACDMH2−, M=ZnII, CdII, X=Br, I). Thermogravimetric analysis showed irreversible bond breakage of the coordinatively bonded DMF molecules followed by decomposition at this temperature.  相似文献   

4.
The title compounds, (NH4)2[MnII(edta)(H2O)]·3H2O (H4edta = ethylenediamine-N,N,N′,N′-tetraacetic acid), (NH4)2[MnII(cydta)(H2O)]·4H2O (H4cydta = trans-1,2-cyclohexanediamine-N,N,N′,N′-tetraacetic acid) and K2[MnII(Hdtpa)]·3.5H2O (H5dtpa = diethylenetriamine-N,N,N′,N″,N″-pentaacetic acid), were prepared; their compositions and structures were determined by elemental analysis and single-crystal X-ray diffraction technique. In these three complexes, the Mn2+ ions are all seven-coordinated and have a pseudomonocapped trigonal prismatic configuration. All the three complexes crystallize in triclinic system in P-1 space group. Crystal data: (NH4)2[MnII(edta)(H2O)]·3H2O complex, a = 8.774(3) ?, b = 9.007(3) ?, c = 13.483(4) ?, α = 80.095(4)°, β = 80.708(4)°, γ = 68.770(4)°, V = 972.6(5) ?3, Z = 2, D c = 1.541 g/cm3, μ = 0.745 mm−1, R = 0.033 and wR = 0.099 for 3406 observed reflections with I ≥ 2σ(I); (NH4)2[MnII(cydta)(H2O)]·4H2O complex, a = 8.9720(18) ?, b = 9.4380(19) ?, c = 14.931(3) ?, α = 76.99(3)°, β = 83.27(3)°, γ = 75.62(3)°, V = 1190.8(4)?3, Z = 2, D c = 1.426 g/cm3, μ = 0.625 mm−1, R = 0.061 and wR = 0.197 for 3240 observed reflections with I ≥ 2σ(I); K2[MnII(Hdtpa)]·3.5H2O complex, a = 8.672(3) ?, b = 9.059(3) ?, c = 15.074(6) ?, α = 95.813(6)°, β = 96.665(6)°, γ = 99.212(6)°, V = 1152.4(7) ?3, Z = 2, D c = 1.687 g/cm3, μ = 1.006 mm−1, R = 0.037 and wR = 0.090 for 4654 observed reflections with I ≥ 2σ(I). Original Russian Text Copyright ? 2008 by X. F. Wang, J. Gao, J. Wang, Zh. H. Zhang, Y. F. Wang, L. J. Chen, W. Sun, and X. D. Zhang The text was submitted by the authors in English. Zhurnal Strukturnoi Khimii, Vol. 49, No. 4, pp. 753–759, July–August, 2008.  相似文献   

5.
RHF/6-31G(d) and MP2/6-31G(d) quantum-chemical calculations of N′,N′-dimethylethanohydrazide molecule and also MP2/6-31G(d) calculations of its protonated forms were performed. With the use of IR and 1H NMR spectroscopy the series of N′,N′-dialkylhydrazides and their salts with HCl and H2SO4 were studied. The position of proton addition was determined. The experimental results were compared with the calculated findings.  相似文献   

6.
The reaction between Pd(N,N′)Cl2 [N,N′ ≡ 1-alkyl-2-(arylazo)imidazole (N,N′) and picolinic acid (picH) have been studied spectrophotometrically at λ = 463 nm in MeCN at 298 K. The product is [Pd(pic)2] which has been verified by the synthesis of the pure compound from Na2[PdCl4] and picH. The kinetics of the nucleophilic substitution reaction have been studied under pseudo-first-order conditions. The reaction proceeds in a two-step-consecutive manner (A → B → C); each step follows first order kinetics with respect to each complex and picH where the rate equations are: Rate 1 = {k′0 + k′2[picH]0} × [Pd(N,N′)Cl2] and Rate 2 = {k′′0 + k′′2[picH]0}[Pd(N,O)(monodentate N,N′)Cl2] such that the first step second order rate constant (k2) is greater than the second step second order rate constant (k′′2). External addition of Cl (as LiCl) suppresses the rate. Increase in π-acidity of the N,N′ ligand, increases the rate. The reaction has been studied at different temperatures and the activation parameters (ΔH° and ΔS°) were calculated from the Eyring plot.  相似文献   

7.
Dechlorination of Ru(PPh3)2(TaiMe)Cl2 (TaiMe = p-Me-C6H4-N=N-C3H2NN(1)-Me (1), 1-methyl-2-(p-tolylazo)imidazole) has been carried out in acetone solution by Ag+ and reacted with N,N’-chelators to synthesise [Ru(PPh3)2 (TaiMe)(N,N’)]2+. The complexes have been isolated as their perchlorate salts. The N,N’ chelators are 1-alkyl-2-(phenylazo)imidazoles (PaiX, X = Me, Et, CH2Ph); 2-(arylazo)pyridines, (Raap,p-R-C6H4-N=N-C5H4N; R = H, Me, Cl); 2-(arylazo)pyrimidines (Raapm,p-R-C6H4-N=N-C3N2H2; R = H, Me, Cl); 2,2’-bipyridine (bpy) and 1,10-phenanthroline (o-phen). Unsymmetrical N,N’ chelators may give two isomers and this is indeed observed. The1H NMR spectral data refer to the presence of two isomers in the mixture in different proportions. With consideration of coordination pairs in the order of PPh3, PPh3; N,N (N refers to N(immidazole)) and N’,N (N’ refers to N(azo)), the complexes have been characterised astrans-cis-cis andtrans-trans-trans configuration; the former predominates in the mixture. Electrochemical studies exhibit high potential Ru(III)/Ru(II) couple and quasireversible N=N reduction. Electronic spectra show high intensity (ε ∼ 104) MLCT transition in the visible region (520 ±10) nm along with a shoulder (ε ∼ 103) in the longer wavelength region.  相似文献   

8.
Silver-assisted aquation of blue cis-trans-cis-RuCl2(RAaiR’)2 (I) leads to the synthesis of solvento species, blue-violet cis-trans-cis-[Ru(OH2)2(RAaiR’)2](ClO4)2 (II), where RAaiR’ = p-R-C6H4-N=N-C3H2-NN, abbreviated as N,N′ chelator (N(imidazole) and N(azo) represent N and N′, respectively); R = H (a), p-Me (b), p-Cl(c); R′ = Me (III), Et (IV), Bz (V), that reacted with NCS in warm EtOH resulting in red-violet dithiocyanato complexes of the type [Ru(NCS)2(RAaiR)2] (IIIa–Vn). These complexes were studied by elemental analysis, UV-Vis, IR, and 1H NMR spectroscopy and cyclic voltammetry. The solution structure and stereoretentive transformation in each step have been established from 1H NMR results. All the complexes exhibit strong MLCT transitions in the visible region. They are redox active and display one metal-centered oxidation and successive ligand-based reductions. Linkage isomerisation was studied by changing the solvent and then by UV-Vis spectral analysis.  相似文献   

9.
In this work, the title complexes, (EnH2)1.5[ErIII(Ttha)] · 3H2O (I) and (EnH2)[ErIII(Egta)(H2O)]2 · 6H2O (II), where En = ethylenediamine, H6Ttha = triethylenetetramine-N,N,N′,N″,N″’,N″′-hexaacetic acid, H4Egta = ethyleneglycol-bis-(2-aminoethylether)-N,N,N′,N′-tetraacetic acid, have been successfully synthesized. Their structures have been characterized by IR spectroscopy and single-crystal X-ray diffraction techniques. The X-ray diffraction reveals that I is nine-coordinated and crystallizes in the monoclinic crystal space group P2/n with cell dimensions a = 17.6058(16), b = 9.6249(9), c = 20.560(2) ?, β = 109.7440(10)°, and V = 3279.1(5) ?3. Compound II is also nine-coordinated and crystallizes in the monoclinic crystal space group P21/n with the cell dimensions a = 12.938(6), b = 12.651(5), c = 14.943(6) ?, β = 105.441(5)°, and V = 2357.5(17) ?3. In I, each EnH22+ cation connects three adjacent [ErIII(Egta)(H2O)] complex anions through hydrogen bonds, while in I, there are two types of EnH2 2+ anions. One is highly symmetrical, forming hydrogen bonds with two neighboring [ErIII(Ttha)]3− complex anions. The other anion connects three adjacent [ErIII(Ttha)]3− complex anions through hydrogen bonds. These hydrogen bonds lead to the formation of 2D ladder-like layer structure.  相似文献   

10.
A novel ligand (H2L), diethylenetriamine-N,N′,N′′-triacetylisoniazide N,N′′-bisacetic acid, and its four non-ion transition metal complexes, ML · nH2O (M = Mn, n = 4; M = Co, Ni, n = 2; M = Cu, n = 1), have been synthesized and characterized on the basis of elemental analysis, molar conductivity, 1H-NMR, FAB-MS, TG-DTA analysis and IR spectrum. In addition, relaxivity (R1) of the complexes was determined, the relaxivity of MnL, CoL, NiL, CuL as well as Gd(DTPA)2− used as a control are 6.94, 2.79, 2.52, 1.59 and 4.34 l mmol−1 s−1, respectively. The relaxivity of MnL is larger than that of Gd(DTPA)2−. The results show that the complex of MnL may be a potential MRI contrast agent.  相似文献   

11.
The paper reports the synthesis and characterization of vanadium complexes of N,N′-(±)-trans-bis(2,4-dihydroxyacetophenone)-1,2-cyclohexanediamine (H2L1) and N,N′-(±)-trans-bis(2,4-dihyroxy-5-nitroacetophenone)-1,2-chyclohexanediamine (H2L2). All the complexes were characterized by elemental analysis, magnetic susceptibility measurements, infrared and electronic spectra, and thermogravimetric analysis. The X-ray patterns of the [VO(L1)] · H2O (I) and [VO(L2)] · H2O (II) complexes show the monoclinic system with the unit cell parameters a = 26.1352, b = 11.7149, c = 6.0401 β = 115.38° and a = 29.3787, b = 12.9398, c = 5.9175 β = 96.84°, respectively. The complexes I and II catalyze the oxidation of styrene in the presence of hydrogen peroxide.  相似文献   

12.
Ag+ assisted aquation of blue cis-trans-cis-RuCl2(RaaiR′)2 (4–6) leads to the synthesis of solvento species, blue-violet cis-trans-cis-[Ru(OH2)2(RaaiR′)2](ClO4)2 [Raai R′=p-R-C6H4 N=N–C3H2–NN–1–R′, (1–3), abbreviated as N,N′-chelator, where N(imidazole) and N(azo) represent N and N′, respectively; R = H (a), OMe (b), NO2 (c) and R′ = Me (1/4/7/10), CH2CH3 (2/5/8/11), CH2Ph (3/6/9/12)] that have been reacted with NO2in warm EtOH resulting in violet dinitro complexes of the type, Ru(NO2)2(RaaiR′)2 (7–9). The nitrite complexes are useful synthons of electrophilic nitrosyls, and on triturating the compounds, (7b–9b) with conc. HClO4 nitro-nitrosyl derivatives, [Ru(NO2)(NO)(OMeaaiR′)2](ClO4)2 (10b–12b) are isolated. The solution structure and stereoretentive transformation in each step have been established from 1H n.m.r. results. All the complexes exhibit strong MLCT transitions in the visible region. They are redox active and display one metal-centred oxidation and successive ligand-based reductions. The redox potentials of Ru(III)/Ru(II) (E1/2M) of (10b–12b) are anodically shifted by ∼ ∼0.2 V as compared to those of dinitro precursors, (7b–9b). The ν(NO) >1900 cm−1 strongly suggests the presence of linear Ru–NO bonding. The electrophilic behaviour of metal bound nitrosyl has been proved in one case (12b) by reacting with a bicyclic ketone, camphor, containing an active methylene group and an arylhydrazone with an active methine group, and the heteroleptic tris chelates thus formed have been characterised.  相似文献   

13.
In this work, the title complexes, NH4[ErIII(Cydta)(H2O)2] · 4.5H2O (I) (H4Cydta = trans-1,2-cyclo-hexanediamine-N,N,N′,N′-tetraacetic acid) and (NH4)2[Er2III(Pdta)2(H2O)2] · 2H2O (II) (H4Pdta= propylene-diamine-N,N,N′,N′-tetraacetic acid), were prepared, respectively, and their composition and structures were determined by elemental analyses and single-crystal X-ray diffraction techniques. Complex I selects a mononu-clear structure with pseudosquare antiprismatic geometry crystallized in the triclinic crystal system with space group $ P\bar 1 $ P\bar 1 and the central Er3+ ion is eight-coordinated by the hexadentate Cydta ligand and two water molecules. The crystal data are as follows: a = 8.568(3), b = 10.024(3), c = 14.377(4) ?, α = 88.404(4)°, β = 75.411(4)°, γ = 88.332(4)°, V = 1194.2(6) ?3, Z = 1, ρ c = 1.793 g/cm3, μ = 3.586 mm−1, F(000) = 648, R = 0.0257, and wR = 0.0667 for 4169 observed reflections with I ≥ 2σ(I). Complex II is eight-coordinated as well, which selects a binuclear structure with two pseudosquare antiprismatic geometry and crystallizes in the monoclinic crystal system with space group P21/n. The central Er3+ ion is coordinated by two nitrogens and four oxygens from one hexadentate Pdta ligand. Besides, two oxygens come from one carboxylic group of the neighboring Pdta ligand and one water molecule, respectively. The crystal data are as follows: a = 12.7576(8), b = 9.3151(6), c = 14.3278(9) ?, β = 96.1380(10)°, V = 1692.93(19) ?3, Z = 4, ρ c = 2.054 g/cm3, μ = 5.015 mm−1, F(000) = 1028, R= 0.0228, and wR = 0.0534 for 2984 observed reflections with I ≥ 2σ(I).  相似文献   

14.
The thiosemicarbazide and hydrazide Cu(II) complexes, [Cu3L21(py)4Cl2] (1), [Cu(HL2)py] (2) and [Cu(HL3)py] (3), (H2L1 = 1-picolinoylthiosemicarbazide, H3L2 = N′-(2-hydroxybenzylidene)-3-hydroxy-2-naphthohydrazide, H3L3 = 2-hydroxy-N′-((2-hydroxy-naphthalen-1-yl)methylene)benzohydrazide) have been prepared and characterized through physicochemical and spectroscopic methods as well as X-ray crystallography. Complex 1 has a centrosymmetric structure with –N–N– bridged Cu3 skeleton. Neighboring molecules are linked into a 3D supermolecular framework by π–π stacking interactions, N–H···Cl and C–H···Cl hydrogen bonds. Complexes 2 and 3 have similar planar structures but different dimers formed by concomitant Cu···N and Cu···O interactions, respectively. Solvent accessible voids with a volume of 391 ?3 are included in the structure of complex 2, indicating that this complex is a potential host candidate. Thermogravimetric analysis shows that the three complexes are stable up to 100 °C.  相似文献   

15.
Reaction of [Au(C6F5)(tht)2Cl](OTf) with RaaiR′ in CH2Cl2 medium leads to [Au(C6F5)(RaaiR′)Cl](OTf) [RaaiR′ = p-R–C6H4–N=N–C3H2–NN-1-R′, (1–3), abbreviated as N,N′-chelator, where N(imidazole) and N(azo) represent N and N′, respectively; R = H (a), Me (b), Cl (c) and R′ = Me (1), CH2CH3 (2), CH2Ph (3), tht is tetrahydrothiophen]. The maximum molecular peak of [Au(C6F5)(MeaaiMe)Cl] is observed at m/z 599.51 (100 %) in the FAB mass spectrum. Ir spectra of the complexes show –C=N– and –N=N– stretching near at 1590 and 1370 cm−1 and near at 1510, 955, 800 cm−1 due to the presence of pentafluorophenyl ring. The 1H-NMR spectral measurements suggest methylene, –CH2–, in RaaiEt gives a complex AB type multiplet while in RaaiCH2Ph shows AB type quartets. 13C-NMR spectrum of complexes confirm the molecular skeleton. In the 1H-1H-COSY spectrum as well as contour peaks in the 1H-13C HMQC spectrum for the present complexes, assign the solution structure and stereoretentive conformation. The electrochemistry gives the ligand reduction peaks.  相似文献   

16.
The reaction of ctc-[Ru(RaaiR′)2Cl2] (3a–3i) [RaaiR′=1-alkyl-2-(arylazo)imidazole, p-R—C6H4—N=N— C3H2NN(1)—R′, R=H, OMe, NO2, R′=Me, Et, Bz] with KS2COR′′ (R′′=Me, Et, Pr, Bu or CH2Ph) in boiling dimethylformamide afforded [RuII{o-S—C6H4(p-R-)—N=N—C3H2NN(1)—R′}2] (4a–4i), where the ortho-carbon atom of the pendant phenyl ring of both ligands has been selectively and directedly thiolated. The newly formed tridentate thiolate ligands are bound in a meridional fashion. The solution electronic spectra exhibit a strong MLCT band near 700 nm and near 550 nm, respectively in DCM. The molecular geometry of the complexes in solution has been determined by H n.m.r. spectroscopy. Cyclic voltammograms show a Ru(II)/Ru(III) couple near 0.4 V and an irreversible oxidation response near 1.0 V due to oxidation of the coordinated thiol group, along with two successive reversible ligand reductions in the range −0.80–0.87 V (one electron), −1.38–1.42 V (one electron). Coulometric oxidation of the complexes at 0.6 V versus SCE in CH2Cl2 produced an unstable Ru(III) congener. When R=Me the presence of trivalent ruthenium was proved by a rhombic e.p.r. spectrum having g1=2.349, g2=2.310.  相似文献   

17.
Reaction of [Ni(dppe)Cl2/Br2] with AgOTf in CH2Cl2 medium following ligand addition leads to [Ni(dppe)(OSO2CF3)2] and then [Ni(dppe)(RaaiR)](OSO2CF3)2 [RaaiR′ = p–R–C6H4–N=N–C3H2–NN-1–R′,(1–3), abbreviated as N,N′-chelator, where N(imidazole) and N(azo) represent N and N′, respectively; R = H (a), Me (b), Cl (c) and R′ = Me (1), CH2CH3 (2), CH2Ph (3), OSO2CF3 is the triflate anion]. 31P{1H}-NMR confirm that stable bis-chelated square planar Ni(II) azoimine–dppe complex formation with one sharp peaks. The 1H NMR spectral measurements suggest azoimine link is present with lot of phenyl protons in the aromatic region. Considering all the moities there are a lot of different carbon atoms in the molecule which gives many different peaks in the 13C(1H)-NMR spectrum. In the 1H-1H COSY spectrum in the present complexes and contour peaks in the 1H-13C-HMQC spectrum in the present complexes, assign the solution structure and stereoretentive conformation in each complexes.  相似文献   

18.
Sulfoxide RS(O)R′ (1), sulfimide RS(=NSO2Ar)R′ (2), and sulfoximide RS(O)(=NSO2Ar)R′ (3) (R=Me3Sn(CH2)3, R′=n-C5H11, Ar=4-C6H4Cl) were investigated by1H and13C NMR spectroscopy. Unlike 3, compounds 1 and 2 have a cyclic structure due to the intramolecular donor-acceptor S→Sn interaction. Translated fromIzvestiya Akademii Nauk. Seriya Khimicheskaya, No. 11, pp. 1966–1969, November, 1997.  相似文献   

19.
Asymmetric trimethylsilylcyanation of a number of aromatic and aliphatic aldehydes catalyzed by chiral TiIV complexes preparedin situ from Ti(OPri)4 and (1S)-[N,N′-bis(2′-hydroxy-3′-tert-butylbenzylidene)]-1,2-diaminoalkanes gives products with (S)-absolute configurations. Translated fromIzvestiya Akademii Nauk. Seriya Khimicheskaya, No. 11, pp. 2040–2042, November, 1997.  相似文献   

20.
Two novel ethylenediaminium salt of europium complexes with aminopolycarboxylic acid ligands, (EnH2)3[EuIII(Ttha)]2 · 11H2O (I) (En is ethylenediamine, H6Ttha is triethylenetetramine-N,N,N′,N″,N‴,N‴-hexaacetic acid) and (EnH2)[EuIII(Egta)(H2O)]2 · 6H2O (II) (H4Egta is ethyleneglycol-bis(2-aminoethylether)-N,N,N′,N′-tetraacetic acid) complexes were synthesized, and their crystal structures were determined by single-crystal X-ray diffraction techniques. Both of the two complexes adopt nine-coordinate structures with the pseudo-monocapped square antiprism and crystallize in the monoclinic crystal system with the P21/n space group. The crystal data for complex I are as follows: a = 17.8262(8), b = 19.3137(5), c = 20.6233(8) ?, β = 111.301(2)°, V = 6615.3(4) ?3, Z = 8, ρ c = 1.677 mg/m3, μ = 1.981 mm−1, F(000) = 3432, R = 0.0308, and wR = 0.0737 for 43622 observed reflections with I ≥ 2σ(I). The crystal data for complex II are as follows: a = 12.952(3), b = 12.618(2), c = 14.809(3) ?, β = 105.695(2)°, V = 2330.0(8) ?3, Z = 4, ρ c = 1.800 mg/m3, μ = 2.765 mm−1, F(000) = 1276, R = 0.0297, and wR = 0.0638 for 18416 observed reflections with I ≥ 2σ(I). One remarkable feature of the two complexes is that the protonated [EnH22+] cations conjugating to [EuIII(Ttha)]26− and [EuIII(Egta)(H2O)]22− complex anions are reviewed, respectively, which open the path for the EuIII complexes conjugating with other various biomolecules.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号