首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 179 毫秒
1.
The electronic and geometrical structures of the low-energy states of 1,4,5,8-naphthalenetetracarboxylic dianhydride parent diimide (1) are studied in terms of the complete active space self-consistent field (CASSCF) method employed at different level with respect to the size and the quality of the active space. In the framework of the vibronic model based on the Franck–Condon (FC) effect the absorption and magnetic circular dichroism (MCD) spectra are studied in the excitation region corresponding to two low-energy 11Ag → 11B2u and 11Ag → 11B3u electronic transitions in diimides. In that (visible) excitation region the CASSCF computations with the 5π[4n]5π active space (i.e., the naphthalene-like π orbitals enriched by the four lone pair orbitals of the oxygen atoms) were found to reproduce very well the empirical absorption and the MCD spectra measured for the dicyclohexyl-N,N-substituted diimide (2). At the same CASSCF/5π[4n]5π level, the electronic absorption of diimides in the near UV excitation region were attributed to the 11Ag → 21B1u, 11Ag → 21B3u and 11Ag → 21B2u electronic transitions; the latter two are mostly localized on the “diimide chromophore”. For these transitions the calculated magneto-optical characteristics, such as sign pattern and intensity distribution in the MCD spectrum, were found to be consistent with that experimentally observed for the diimide 2 compound.  相似文献   

2.
Mechanisms of RN3 (R=CH3, CH3CH2, (CH3)2CH, (CH3)3C) dissociations are proposed based on CAS, MP2 and B3LYP methods. The energy gaps between the ground-state reactants RN3 and the intersystem crossing (ISC) points are only a little lower than respective potential energy barriers of the spin-allowed reactions, 1RN3 → 1RN + 1N2. The ISC point, therefore, is considered as a transition state of the spin-forbidden reactions, 1RN3 → 3RN + 1N2. The methods of IRC and topological analysis of electron density are used to explain and predict the thermal dissociation pathways of the reactions studied.  相似文献   

3.
The collisional behaviour of Ba[6s5d(3DJ)], 1.151 eV above the 6s2(1S0) electronic ground state, in the presence of atomic strontium, has been investigated in the ‘long-time domain' (ca. 100 μs–1 ms) following the pulsed dye-laser excitation of barium vapour at elevated temperature at λ = 553.5 nm (Ba[6s6p(1P1)] ← Ba[6s2(1S0)]. Ba(3DJ) is subsequently produced from the short-lived 1P1 state (τe = 8.37 ± 0.38 ns) by a number of radiative and collisional processes. It may then be monitored in the ‘long-time domain' by atomic spectroscopic marker methods involving either collisional activation of Ba(3DJ) by Ba(1S0) and He buffer gas to yield Ba[6s6p(3PJ)] with subsequent emission from the 3P1 state (τe = 1.2 ± 0.1 μs): Ba[6s6p(3P1)] → Ba[6s2(1S0)] + hv (λ = 791.1 nm). Alternatively, emission from Ba(1P1) may be monitored at long times following the generation of this short-lived state by energy pooling following self-annihilation of Ba(3DJ) + Ba(3DJ) from Ba[6s6p(1P1)] → Ba[6s2(1S0)] + hv (λ = 553.5 nm). The generation of Ba(3DJ) in the presence of atomic strontium yields emission in the long-time domain from Sr[5s5p(3P1)] (τe = 19.6 μs): Sr[5s5p(3P1)] → Sr[5s2(1S0)]  + hv (λ = 689.3 nm). Whilst the decay profiles at short times are complex in form, at long times all these atomic profiles show first-order kinetic removal with the decay coefficients for λ = 791.1 nm, 689.3 nm and 553.5 nm emissions in the ratio 1 : 2 : 2, consistent with overall third-order activation of the form: Ba(3DJ) + Ba(3DJ) + Sr(1S0) → Sr(3PJ) + 2Ba(1S0). The mechanism is modelled in detail, including measurement of integrated emission intensities, yielding kinetic data for fundamental collisional processes. The overall rate constant for the third-order collisional activation of Sr[5s5p(3PJ])from 2Ba[6s5d(3DJ)] + Sr[5s2(1S0)] takes the upper limit of 5.8 × 10−27 cm6 atom−2 s−1 (T = 900 K). The rate constant for the two body collisional quenching of Ba[6s5d(3DJ)] by ground state atomic strontium, Sr[5s2(1S0)], is found to be (2.0 ± 0.1) × 10−12 cm3 atom−1 s−1 (T = 900 K).  相似文献   

4.
Spatial structure of six β-substituted enones, with common structure R1O–CR2CH–COCF3, were R1 = C2H5, R2 = H (ETBO); R1 = R2 = CH3 (TMPO); R1 = C2H5, R2 = C6H5 (ETPO); R1 = C2H5, R2 = 4- O2NC6H4 (ETNO); R1 = C2H5, R2 = C(CH3)3 (ETDO) were investigated by 1H and 19F NMR, infrared spectroscopy and AM1 calculations. NMR spectra revealed that enones (MBO), (ETBO) and (TMPO) are exclusively (3E) isomers, whereas in (ETPO), (ETNO) and especially in (ETDO) the percentage of (3Z) isomers is significant and depends on the nature of solvents. Conformational behaviour of studied enones are determined by the rotation around of CC double bond, C–C and C–O single bonds (correspondingly trifluoroacetyl and alkoxy groups), and (EZZ) conformer being the most stable in all cases. IR spectra revealed that with the exception of (ETDO) (EZZ) conformer is most populated in all cases. Bulky substituents like phenyl or tert-butyl group at β-position of enone result in the equilibrium mainly between (EZZ) and (ZZZ) forms, whereas β-hydrogen and β-methyl substituents determine the equilibrium between (EZZ) and (EEZ) or (EZE) conformers.  相似文献   

5.
The synthesis, characterization, and thermal decomposition of the [Ni(SCN)2(H+SCN)2(4-mepy)2] compound with an octahedral structure in polymeric chain were reported, in which SCN groups form bridges among Ni(II) ions. The compound decomposes in water resulting in a pH<4 solution. The FT-IR spectrum presented doublet bands at 2117; 2128 cm−1, 788; 773 cm−1 assigned to ν(C---N) and ν(C---S) stretching modes, respectively, and δ(SCN) deformation modes at 468; 476 cm−1. The Raman spectrum of the compound presented the ν(C---N) stretching as a strong doublet at 2122; 2128 cm−1, ν(C---S) at 783; 770 cm−1, and δ(SCN) at 468; 477 cm−1. No significant changes were observed in the 4-mepy ligand bands compared with the vibrational frequencies of the pure compound or the compound in aqueous solution 0.2 mol l−1. The crystal UV–vis reflectance spectrum presented two bands centered in 626 and 424 nm tentatively assigned to the d→d type transitions, 3A2g3T1g and 3A2g3T1g, for a symmetry close to Oh. The TG curve showed a mass loss between 120 and 200 °C assigned to the loss of the two 4-mepy molecules; from 200 to 265 °C, the loss of the two H+SCN groups; and from 265 to 450 °C, the loss of the two SCN groups that formed the bridges among the nickel atoms. Based on these mass loss data, a mechanism of thermal decomposition for the compound was proposed.  相似文献   

6.
A novel N6 macrocyclic ligand, L1 (2,8,14,20-tetramethyl-3,7,15,19,25,26-hexaaza-tricyclo[19.3.1.19,13]hexacosa-1(24),9,11,13(26),21(25),22-hexaene), was obtained by reduction of the 2 + 2 condensation product of 2,6-diacetylpyridine and propane-1,3-diamine. Zinc(II) complexes of L1, of a related N8 macrocycle, L3 (3,6,9,17,20,23,29,30-octaaza-tricyclo[23.3.1.1[11,15]]triaconta-1(28),1,13,15(30),25(29),26-hexaene), similarly prepared by 2 + 2 condensation of 2,6-diformylpyridine and diethylenetriamine and of a tetra N-2-cyanoethyl derivative of a homologue of L1 prepared from diformyl pyridine and ethane-1,2-diamine, L2 (3-[6,14,17-tris-(2-cyano-ethyl)-3,6,14,17,23,24-hexaaza-tricyclo[17.3.1.18,12] tetracosa-1(23),8(24),9,11,19,21-hexaen-3-yl]-propionitrile), were prepared. Structures were determined for [ZnL1](ClO4)2 · H2O, [ZnL2](NO3)2 and [Zn2L3(NO3)2](NO3)2 · H2O. The [ZnL1](ClO4)2 · H2O and [ZnL2](NO3)2 complexes present a mononuclear endomacrocyclic structure with the metal in an octahedral distorted environment coordinated by the six donor nitrogen atoms from the macrocyclic backbone while the complex [Zn2L3(NO3)2](NO3)2 · H2O is dinuclear with both metal atoms into the macrocyclic cavity coordinated by four donor nitrogen atoms from the macrocyclic framework and one oxygen atom from one monodentate nitrate anion, in a distorted square pyramidal arrangement.  相似文献   

7.
Gas electron diffraction is applied to determine the geometric parameters of the silacyclobutane molecule using a dynamic model where the ring puckering was treated as a large amplitude motion. The structural parameters and the parameters of the potential function were refined taking into account the relaxation of the molecular geometry estimated from ab initio calculations at the MP2/6-311+G(d, p) level of theory. The potential function has been described as V() = V0[(/e)2 − 1]2 with the following parameters V0 = 0.82 ± 0.60 kcal/mol and e = 33.5 ± 2.7°, where is a puckering angle of the ring.

The geometric parameters at the minimum V() (ra in Å, in degrees and uncertainties given as three times the standard deviations including a scale error) are: r(Si–Hax) = 1.467(96), r(Si–Heq) = 1.468(96), r(Si–C) = 1.885(2), r(C–C) = 1.571(3), r(C–H) = 1.100(3), CSiC = 77.2(9), HSiH = 108.3, SiCHeq = 123.5(16), SiCHax = 111.9(16), CC5Heq = 118.4(24), CC5Hax = 112.3(24), HC3H = 107.7, δ(HSiH) = 6.6, δ(HC3H) = 7.0, where the tilts δ, HSiH, and HC3H are estimated from ab initio constraints. The structural parameters are compared with those obtained for related compounds.  相似文献   


8.
Three novel uranyl complexes with organic phosphine oxide ligands and bridging fluorides have been synthesised and structurally characterised. In [ UO2(μ-F)(TPPO)3 2][BF4]2 · nC6H14, 1, and [ UO2(-μF)(TBPO)3 2][BF4]2 2, (where TPPO and TBPO are triphenylphosphine oxide and tri-n-butylphosphine oxide, respectively) two UO2 2+ moieties are bridged by two fluorides with three additional terminal PO donor ligands coordinated to each uranium centre. The dicationic complexes are both charge balanced by two uncoordinated tetrafluoroborate anions. In the related structure, [UO2(μ-F)(F)(DPPMO2)]2 · 2MeOH (3), terminal fluoride is also coordinated to both uranyl centres (where DPPMO2 = bis(diphenylphosphine oxide)methane). All three complexes were prepared during attempted syntheses of complexes with tetrafluoroborate directly coordinated to uranium. It is clear from these results that the fluorophilicity of UO2 2+ causes the abstraction of fluoride from [BF4], with the weakly coordinating anion only present as a counter cation in 1 and 2, and absent completely in 3.  相似文献   

9.
A photo-magnetic effect is evidenced using near-infrared light in the binuclear complex [Fe(bpym)(NCS)2]2(bpym). This compound has a 5T2g5T2g ground state and exhibits no thermal spin crossover – in contrast to the analogous [Fe(bpym)(NCSe)2]2(bpym). The estimated photo-conversion ratio is ca. 30%. By means of magnetic susceptibility measurements as well as Raman and infrared absorption spectroscopies, the nature of the photo-induced phase was established as the 5T2g1A1g state, which means that only one iron center is converted to low-spin. The photo-induced state was completely converted back to the ground state either by visible light excitation or by heating.  相似文献   

10.
The 61Πu state of sodium dimer has been observed up to v = 53 in excitation spectra of the system, recorded by polarisation labelling spectroscopy technique. The Dunham coefficients are derived and the potential energy curve constructed by the inverted perturbation approach method. Equilibrium constants for the 61Πu state of Na2 are: Te = 35446.06 ± 0.04 cm−1 (with respect to the minimum of the electronic ground state), Y10 = 111.388 ± 0.019 cm−1, Y01 = 0.112122 ± 0.000017 cm−1.  相似文献   

11.
In situ reaction of Li[closo-1-Ph-1,2-C2B10H10] with 7-azabicyclo [4.1.0] heptane results in the formation of the disubstituted carborane, closo-1-Ph-2-(2′-aminocyclohexyl)-1,2-C2B10H10 (1), in 63% yield. Decapitation of (1) with potassium hydroxide in refluxing ethanol produces the cage-opened nido-carborane, K[nido-7-Ph-8-(2′-aminocyclohexyl)-7,8-C2B9H10] (2), in 80% yield. Deprotonation of the above monoanion with two equivalents of n-butyllithium followed by reaction with anhydrous MCl4 · 2THF (M = Zr, Ti) provides d0-half-sandwich metallocarboranes, closo-1-M(Cl)-2-Ph-3-(2′-σ-(H)N-cyclohexyl)-2,3-η5-C2B9H9 (3 M = Zr; 4 M = Ti) in 53% and 42% yields, respectively. The reaction of Li[closo-1,2-C2B10H11] with 7-azabicyclo [4.1.0] heptane in THF affords closo-1-(2′-aminocyclohexyl)-1,2-C2B10H10 (5) in 59% yield. Immobilization of the carboranyl amino ligand (1) to an organic support, Merrifield’s peptide resin (1%), has been achieved by the reaction of the sodium salt of (5) with polystyryl chloride in THF to produce closo-1-(2′-aminocyclohexyl)-2-polystyryl-1,2-C2B10H10 (6) in 87% yield. Further reaction of the dianion derived from (6) with anhydrous ZrCl4 · 2THF led to the formation of the organic polystyryl supported d0-half-sandwich metallocarborane, closo-1-Zr(Cl)-2-(2′-σ-(H)N-cyclohexyl)-3-polystyryl-2,3-η5-C2B9H9 (7), in 38% yield. These new compounds have been characterized by elemental analyses, NMR, and IR spectra. Polymerizations of both ethylene and vinyl chloride with (3) and (7) have been performed in toluene using MMAO-7 (13% ISOPAR-E) as the co-catalyst. Molecular weights up to 32.8 × 103 (Mw/Mn = 1.8) and 9.5 × 103 (Mw/Mn = 2.1) were obtained for PE and PVC, respectively.  相似文献   

12.
Cheng S  Gao F  Krummel KI  Garland M 《Talanta》2008,74(5):1132-1140
Two different organometallic ligand substitution reactions were investigated: (1) an achiral reactive system consisting of Rh4(CO)12 + PPh3  Rh4(CO)11PPh3 + CO in n-hexane under argon; and (2) a chiral reactive system consisting of Rh4(CO)12 + (S)-BINAP  Rh4(CO)10BINAP + 2CO in cyclohexane under argon. These two reactions were run at ultra high dilution. In both multi-component reactive systems the concentrations of all the solutes were less than 40 ppm and many solute concentrations were just 1–10 ppm. In situ spectroscopic measurements were carried out using UV–vis (Ultraviolet–visible) spectroscopy and UV–vis CD spectroscopy on the reactive organometallic systems (1) and (2), respectively. The BTEM algorithm was applied to these spectroscopic data sets. The reconstructed UV–vis pure component spectra of Rh4(CO)12, Rh4(CO)11PPh3 and Rh4(CO)10BINAP as well as the reconstructed UV–vis CD pure component spectra of Rh4(CO)10BINAP were successfully obtained from BTEM analyses. All these reconstructed pure component spectra are in good agreement with the experimental reference spectra. The concentration profiles of the present species were obtained by performing a least square fit with mass balance constraints for the reactions (1) and (2). The present results indicate that UV–vis and UV–vis-CD spectroscopies can be successfully combined with an appropriate chemometric technique in order to monitor reactive organometallic systems having UV and Vis chromophores.  相似文献   

13.
Reaction of phosphorus ylides Ph3PCHC(O)C6H4NO2 (Y′) and (p-tolyl)3PCHC(O)C6H4Cl (Y″) with HgX2 (X = Cl, Br and I) in equimolar ratios using methanol as solvent leads to binuclear products. The bridge-splitting reaction of binuclear complex [(Y″) · HgI2]2 by DMSO yields the mononuclear complex [(Y″) · HgI2 · DMSO]. This bridge-splitting reaction can be also a method for the synthesis of mononuclear products. C-coordination of ylides and O-coordination of DMSO are demonstrated by single crystal X-ray analyses of binuclear complexes of [(Y′) · HgI2]2 and [(Y″) · HgI2]2 and mononuclear complex of [(Y″) · HgI2 · DMSO]. Characterization of the obtained compounds was also performed by elemental analysis, IR, 1H, 31P, and 13C NMR. Theoretical studies on Hg(II) complexes of Y′ show that the cis-like isomers are about 4–12 kcal/mol less stable than the trans-like structures and the relative energy of cis- and trans-like isomers significantly depends on the size of the bridging halide. These studies on mercury complexes of Y″ show that, formation of mononuclear complexes in DMSO solution in which DMSO acts as a ligand, energetically is more favorable than that of binuclear complexes.  相似文献   

14.
The perphenylmetallocene complexes (η5-C5Ph5)2W (1), [(η5-C5Ph5)2W]+I3 (1+I3), (η5-C5Ph5)2Mo (2) and [(η5-C5Ph5)2Mo]+I3 (2+I3) have been prepared. Hydrogenation of 1 in THF produces (η5-C5Ph5)2WH2 (4), while (η5-C5Ph5)2WHCl (3) is afforded in 1,2-dichloroethane solvent. Carbonylation of 1 produces (η5-C5Ph5)2W(CO) (5). Treatment of 1 with the strong acid CF3SO3H leads to the dicationic species [(η5-C5Ph5)2W]+2[CF3SO3]2 (1+2Tf2) after crystallization. The structures of 2+I3 and 1+2Tf2 have been determined by an X-ray diffraction study. The magnetic susceptibility study indicates a 3E2g ground-state for 1 and 2, and a 4A2g ground-state for 1+ and 2+.  相似文献   

15.
The magnetic susceptibility of 1,1′,2,2′-tetramethylcobaltocene, Co[C5H3(CH3)2]2, and 1,1′-diethylcobaltocene, Co(C5H4C2H5)2, has been studied between 0.99 and 296 K. The data are well reproduced by a calculation of the dynamic Jahn-Teller effect for the 2E1g(a1g2e2g4e1g) ground state of D5d symmetry. A suitable set of parameter values is given by ζ = 100 cm−1, δ = 150 cm−1, kJT = 0.40, κ = 0.70. The magnetism of cobaltocene, Co(C5H5)2, may be described by parameter values of comparable magnitude. The results imply a significantly larger reduction of the spin-orbit coupling parameter ζ due to covalency than of the orbital reduction factor κ.  相似文献   

16.
Photoacoustic calorimetry (PAC) allows measurement of the energetics of reactive intermediates. Here, we report the examination of the metal carbonyl η5-CpMn(CO)3 (Cp, cyclopentadiene) via time-independent PAC, in a homologous series of solvents. The measured heat releases allow one to determine simultaneously the enthalpy and volume change resulting from the photodissociation of CpMn(CO)3. While the photoacoustic signal results from both of these processes, it has often been assumed that the volume change contribution to the observed photoacoustic signal is negligible for small molecules undergoing photodissociation. The current study tests the assumption of a negligible reaction volume by using a more complete treatment. The reaction of an equimolar number of photons and CpMn(CO)3 molecules, the subsequent photodissociation of the Mn–CO bond, and the ligation of a solvent molecule in an alkane solvent yields ΔHobs = 32.7 ± 0.7 kcal/mol and ΔVchem = 11.0 ± 1.3 mL/mol, both of which are independent of the quantum yield of photodissociation. A detailed analysis of the quantum yield is included (using both previously reported measurements, and new data from this work), from which we determine Φdiss = 0.635. This quantum yield allows us to determine ΔHrxn = 51.6 kcal/mol and ΔVrxn = 17.3 mL/mol. These results demonstrate that if the contribution of the reaction volume change to the photoacoustic signal is ignored, the reaction enthalpy derived would underestimate the true value by 7%. We also estimate the BDE{Cp(CO)2Mn–CO} to be 59.4 kcal/mol.  相似文献   

17.
Cavity ring-down spectroscopy (CRDS) has been applied to the detection of oxygen atoms, on the highly forbidden 1D2 ← 3P2 line at 630.030 nm. Results are presented for CRDS detection in a discharge flow system, in which the atoms are prepared by a microwave discharge of N2O/Ar or O2. Comparison of concentrations determined by CRDS and chemical titration by NO2 is made. CRDS is found to be a non-intrusive technique for the determination of oxygen atom concentrations in the range of 1014 atoms cm−3 and higher, with an estimated accuracy of 20%.  相似文献   

18.
CdII complexes with glycine (gly) and sarcosine (sar) were studied by glass electrode potentiometry, direct current polarography, virtual potentiometry, and molecular modelling. The electrochemically reversible CdII–glycine–OH labile system was best described by a model consisting of M(HL), ML, ML2, ML3, ML(OH) and ML2(OH) (M = CdII, L = gly) with the overall stability constants, as log β, determined to be 10.30 ± 0.05, 4.21 ± 0.03, 7.30 ± 0.05, 9.84 ± 0.04, 8.9 ± 0.1, and 10.75 ± 0.10, respectively. In case of the electrochemically quasi-reversible CdII–sarcosine–OH labile system, only ML, ML2 and ML3 (M = CdII, L = sar) were found and their stability constants, as log β, were determined to be 3.80 ± 0.03, 6.91 ± 0.07, and 8.9 ± 0.4, respectively. Stability constants for the ML complexes, the prime focus of this work, were thus established with an uncertainty smaller than 0.05 log units. The observed departure from electrochemical reversibility for the Cd–sarcosine–OH system was attributed mainly to the decrease in the transfer coefficient . The MM2 force field, supplemented by additional parameters, reproduced the reported crystal structures of diaqua-bis(glycinato-O,N)nickel(II) and fac-tri(glycinato)-nickelate(II) very well. These parameters were used to predict structures of all possible isomers of (i) [Ni(H2O)4(gly)]+ and [Ni(H2O)4(sar)]+; and (ii) [Ni(H2O)3(IDA)] and [Ni(H2O)3(MIDA)] (IDA = iminodiacetic acid, MIDA = N-methyl iminodiacetic acid) by molecular mechanics/simulated annealing methods. The change in strain energy, ΔUstr, that accompanies the substitution of one ligand by another (ML + L′ → ML′ + L), was computed and a strain energy ΔUstr = +0.28 kcal mol−1 for the reaction [Ni(H2O)4(gly)]+ + sar → [Ni(H2O)4(sar)]+ + gly was found. This predicts the monoglycine complex to be marginally more stable. By contrast, for the reaction [Ni(H2O)3IDA] + MIDA → [Ni(H2O)3MIDA] + IDA, ΔUstr = −0.64 kcal mol−1, and the monoMIDA complex is predicted to be more stable. This correlates well with (i) stability constants for Cd–gly and Cd–sar reported here; and (ii) known stability constants of ML complex for glycine, sarcosine, IDA, and MIDA.  相似文献   

19.
We report the measurement of the zinc and cadmium plasma parameters produced by the fundamental, second, and third harmonics of the neodymium-doped yttrium aluminium garnet laser. The excitation temperature has been determined from the Boltzmann plot method, whereas the electron number density is estimated from the Stark broadened profile of several spectral lines. The temporal evolution of the plasma has also been investigated. Besides, we present experimental relative transition probabilities of the Zn (4s5s 3S1 → 4s4p 3P0,1,2) and Cd (5s6s 3S1 → 5s5p 3P0,1,2) triplets and compare our data with that listed in the National Institute of Standards and Technology database. The experiments have been performed in air but also in He, Ne and Ar atmosphere to study the effects of ambient gas environment on the emission intensity of the atomic and ionic lines and on the plasma parameters.  相似文献   

20.
Pt(II) and Pd(II) dichloride complexes with 5,7-ditertbutyl-1,2,4-triazolo[1,5-a]pyrimidine (dbtp) have been synthesized and characterized by infrared and 1H, 13C NMR, 13C CPMAS spectroscopy. The structures of the cis-PtCl2(dbtp)2 · EtOH (1) and cis-PdCl2(dbtp)(dmso) (2) has been determined by signal-crystal X-ray diffraction. In both complexes the X-ray crystal structures shows that heterocycle ligand (dbtp) binds the central atom monodentate via nitrogen atom N(3). In addition, compound (2) is interesting for its structural features, because it is the first report of mixed dichloride Pd(II) complexes with N-donor (triazolopyrimidine) and S-donor (dimethylsulfoxide) ligands. In this structure the Pd–Cl distances are: 2.302(1) and 2.281(1) Å, Pd–N 2.041(3) Å and Pd–S 2.245(1) Å. The 1H, 13C NMR studies show clearly that these structures are retained in solution.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号