首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this paper, I present a mapping between representation of some quantum phenomena in one dimension and behavior of a classical time-dependent harmonic oscillator. For the first time, it is demonstrated that quantum tunneling can be described in terms of classical physics without invoking violations of the energy conservation law at any time instance. A formula is presented that generates a wide class of potential barrier shapes with the desirable reflection (transmission) coefficient and transmission phase shift along with the corresponding exact solutions of the time-independent Schrödinger’s equation. These results, with support from numerical simulations, strongly suggest that two uncoupled classical harmonic oscillators, which initially have a 90° relative phase shift and then are simultaneously disturbed by the same parametric perturbation of a finite duration, manifest behavior which can be mapped to that of a single quantum particle, with classical ‘range relations’ analogous to the uncertainty relations of quantum physics.  相似文献   

2.
3.
4.
Tomographic approach to describing both the states in classical statistical mechanics and the states in quantum mechanics using the fair probability distributions is reviewed. The entropy associated with the probability distribution (tomographic entropy) for classical and quantum systems is studied. The experimental possibility to check the inequalities like the position–momentum uncertainty relations and entropic uncertainty relations are considered.  相似文献   

5.
Koopman-von Neumann in the 30’s gave an operatorial formulation of Classical Mechanics. It was shown later on that this formulation could also be written in a path-integral form. We will label this functional approach as CPI (for classical path-integral) to distinguish it from the quantum mechanical one, which we will indicate with QPI. In the CPI two Grassmannian partners of time make their natural appearance and in this manner time becomes something like a three dimensional supermanifold. Next we introduce a metric in this supermanifold and show that a particular choice of the supermetric reproduces the CPI while a different one gives the QPI.  相似文献   

6.
In this paper we show that the three main equations used by Bohm in his approach to quantum mechanics are already contained in the earlier paper by Moyal which forms the basis for what is known as the Wigner-Moyal approach. This shows, contrary to the usual perception, that there is a deep relation between the two approaches. We suggest the relevance of this result to the more general problem of constructing a quantum geometry.  相似文献   

7.
Does the quantum state represent reality or our knowledge of reality? In making this distinction precise, we are led to a novel classification of hidden variable models of quantum theory. We show that representatives of each class can be found among existing constructions for two-dimensional Hilbert spaces. Our approach also provides a fruitful new perspective on arguments for the nonlocality and incompleteness of quantum theory. Specifically, we show that for models wherein the quantum state has the status of something real, the failure of locality can be established through an argument considerably more straightforward than Bell’s theorem. The historical significance of this result becomes evident when one recognizes that the same reasoning is present in Einstein’s preferred argument for incompleteness, which dates back to 1935. This fact suggests that Einstein was seeking not just any completion of quantum theory, but one wherein quantum states are solely representative of our knowledge. Our hypothesis is supported by an analysis of Einstein’s attempts to clarify his views on quantum theory and the circumstance of his otherwise puzzling abandonment of an even simpler argument for incompleteness from 1927.  相似文献   

8.
9.
In contrast to the Copenhagen interpretation we consider quantum mechanics as universally valid and query whether classical physics is really intuitive and plausible. We discuss these problems within the quantum logic approach to quantum mechanics where the classical ontology is relaxed by reducing metaphysical hypotheses. On the basis of this weak ontology a formal logic of quantum physics can be established which is given by an orthomodular lattice. By means of the Solèr condition and Piron's result one obtains the classical Hilbert spaces. However, this approach is not fully convincing. There is no plausible justification of Solèr's law and the quantum ontology is partly too weak and partly too strong. We propose to replace this ontology by an ontology of unsharp properties and conclude that quantum mechanics is more intuitive than classical mechanics and that classical mechanics is not the macroscopic limit of quantum mechanics.  相似文献   

10.
The Relational Blockworld (RBW) interpretation of non-relativistic quantum mechanics (NRQM) is introduced. Accordingly, the spacetime of NRQM is a relational, non-separable blockworld whereby spatial distance is only defined between interacting trans-temporal objects. RBW is shown to provide a novel statistical interpretation of the wavefunction that deflates the measurement problem, as well as a geometric account of quantum entanglement and non-separability that satisfies locality per special relativity and is free of interpretative mystery. We present RBW’s acausal and adynamical resolution of the so-called “quantum liar paradox,” an experimental set-up alleged to be problematic for a spacetime conception of reality, and conclude by speculating on RBW’s implications for quantum gravity.  相似文献   

11.
Electromagnetic phenomena can be described by Maxwell equations written for the vectors of electric and magnetic field. Equivalently, electrodynamics can be reformulated in terms of an electromagnetic vector potential. We demonstrate that the Schrödinger equation admits an analogous treatment. We present a Lagrangian theory of a real scalar field φ whose equation of motion turns out to be equivalent to the Schrödinger equation with time independent potential. After introduction the field into the formalism, its mathematical structure becomes analogous to those of electrodynamics. The field φ is in the same relation to the real and imaginary part of a wave function as the vector potential is in respect to electric and magnetic fields. Preservation of quantum-mechanics probability is just an energy conservation law of the field φ.  相似文献   

12.
Journal of Statistical Physics - In this work we discuss connections between a one-dimensional system of N particles interacting with a repulsive inverse square potential and confined in a harmonic...  相似文献   

13.
The convergence of the dynamics of classical projection to the dynamics of the classical limit is investigated for 0. A mistake from a previous paper is pointed out, and the correct version of the result is given. A new, similar result is presented if the function generating the Hamiltonian of both the classical projection and the classical limit is a polynomial.  相似文献   

14.
Note on Generalized Quantum Gates and Quantum Operations   总被引:1,自引:0,他引:1  
Recently, Gudder proved that the set of all generalized quantum gates coincides the set of all contractions in a finite-dimensional Hilbert space (S. Gudder, Int. J. Theor. Phys. 47:268–279, 2008). In this note, we proved that the set of all generalized quantum gates is a proper subset of the set of all contractions on an infinite dimensional separable Hilbert space ℋ. Meanwhile, we proved that the quantum operation deduced by an isometry is an extreme point of the set of all quantum operations on ℋ. This subject is supported by NSF of China (10571113).  相似文献   

15.
Molotkov  S. N. 《JETP Letters》2020,111(9):506-511
JETP Letters - The detection of side radiation of transmitting devices is an additional source of information on distributed keys. In contrast to the attack on a quantum communication channel, the...  相似文献   

16.
We present an example of a highly connected closed network of servers, where the time correlations do not vanish in the infinite volume limit. The limiting interacting particle system behaves in a periodic manner. This phenomenon is similar to the continuous symmetry breaking at low temperatures in statistical mechanics, with the average load playing the role of the inverse temperature.  相似文献   

17.
A motivation is given for expressing classical mechanics in terms of diagonal projection matrices and diagonal density matrices. Then quantum mechanics is seen to be a simple generalization in which one replaces the diagonal real matrices with suitable Hermitian matrices.  相似文献   

18.
In spite of the interference manifested in the double-slit experiment, quantum theory predicts that a measure of interference defined by Sorkin and involving various outcome probabilities from an experiment with three slits, is identically zero. We adapt Sorkin’s measure into a general operational probabilistic framework for physical theories, and then study its relationship to the structure of quantum theory. In particular, we characterize the class of probabilistic theories for which the interference measure is zero as ones in which it is possible to fully determine the state of a system via specific sets of ‘two-slit’ experiments.  相似文献   

19.
A novel quantum MIMO communication scheme is proposed by generalizing the wireless communication technique to the quantum field. The MIMO quantum teleportation can be implemented with triplet states in order to enhance the capacity and fidelity of the quantum channel, in which an n-qubit sequence of quantum signals can be transmitted through the MIMO quantum channel by applying the diversity technique. The quantum noise filtering is involved before the quantum signals are outputted. The analysis and discussions demonstrate that the quantum MIMO teleportation can be performed securely with high capacity and fidelity.  相似文献   

20.
The Copenhagen interpretation of quantum mechanics assumes the existence of the classical deterministic Newtonian world. We argue that in fact the Newton determinism in classical world does not hold and in the classical mechanics there is fundamental and irreducible randomness. The classical Newtonian trajectory does not have a direct physical meaning since arbitrary real numbers are not observable. There are classical uncertainty relations: Δq>0 and Δp>0, i.e. the uncertainty (errors of observation) in the determination of coordinate and momentum is always positive (non zero).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号