首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 262 毫秒
1.
An investigation of liposomes comprised of 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC) or 1,2-distearoyl-sn-glycero-3-phosphocholine (DSPC) lipids with cholesterol and zinc phthalocyanine (ZnPC) revealed that several fundamental liposome properties are influenced by composition and by lipid-specific features. DMPC and DSPC liposomes were synthesized, and their compositional changes, encapsulation capacities, morphologies, and release properties were evaluated. In this research, liposome degradation, lysis, and content release were initiated by photolysis, i.e., rupture induced by exposure to light. A controlled release mechanism was created through the introduction of photosensitizers (i.e., ZnPC) embedded within the cholesterol-stabilized liposome membrane. The light wavelength and light exposure time accelerated photodegradation properties of DMPC liposomes compared to DSPC liposomes, which exhibited a slower release rate. Morphological changes in the liposomes were strongly influenced by light wavelength and light exposure time. For both the DMPC and DSPC liposomes, visible light with wavelengths in the red end of the spectrum and broad spectrum ambient lighting (400?C700?nm) were more effective for lysis than UV-A light (365?nm). Heating liposomes to 100?°C decreased the stability of liposomes compared to liposomes kept at room temperatures. In addition, the optimal lipid-to-cholesterol-to-photoactivator ratio that produced the most stable liposomes was determined.  相似文献   

2.
Abstract—
A photochromic phospholipid, 1,2-bis[4-(4- n -butylphenylazo)phenylbutyroyl]phosphatidyl-choline (Bis-Azo PC) has been incorporated into liposomes of gel- and liquid-crystalline-phase phospholipids. Liposomes of gel-phase phospholipid are stable in the presence of the trans photostationary state Bis-Az.o PC and can encapsulate fluorescent marker dye. On photoisomerization to the cis photostationary state, trapped marker is rapidly released. Liposomes containing Bis-Azo PC can rapidly fuse together after UV isomerization, this process continuing in the dark. Exposure to white light causes reversion of Bis-Azo PC to the trans form and halts dye leakage and vesicle fusion. Both unilamellar and multilamellar liposomes are able to fuse together on UV exposure. On UV photolysis, liposomes containing Bis-Azo PC do not fuse with a large excess of unlabeled liposomes, but transfer of Bis-Azo PC can be demonstrated spectrophotometrically. Vesicles of pure gel-phase lipid containing trapped marker dye but initially no Bis-Azo PC become leaky as a result of this lipid transfer. Liposomes composed of liquid-crystalline-phase phosphatidylcholine-containing Bis-Azo PC neither leak trapped marker nor fuse together on photolysis, nor do liquid-crystalline-phase liposomes fuse with gel-phase liposomes under these conditions. These results are discussed together with some possible applications of liposome photodestabilization.  相似文献   

3.
Using the electrostatic adsorption of anionic liposomes on the surface of cationic microparticles of ion-crosslinked chitosan, complexes in which each microparticle can bind up to 110 intact (undestroyed) liposomes are prepared. The saturated complex 350–400 nm in diameter does not dissociate to initial components in aqueous solutions with pH 7 and a NaCl concentration of 0.15 mol/L, but decomposes to 10-nm particles in the presence of proteolytic enzymes. The chitosan–liposome complex and its biodegradation products are characterized by a low cytotoxicity. The described technique may be used to obtain biodegradable multiliposomal containers for the encapsulation and delivery of drugs.  相似文献   

4.
Abstract— Liposomes were prepared from mixtures of dipalmitoyl-i.-α-phosphatidylcholine and up to 40% mol:mol of N-stearoyl-L-histidine (NSH) in the presencc or the hydrophobic sensitizer DHE. In the dark such liposomes are stable and retain entrapped salts. On photolysis with visible light, liposomes leak trapped ions at NSH concentrations greater than 10% mol:mol. Up to 15% mol:mol NSH concentration leakage is seen only during the illumination period, whereas at higher concentration the liposomes continue to leak contents after illumination and fuse to form larger structures. Photolysis of the liposomes is accompanied by oxygen uptake in proportion to the NSH concentration within the bilayer. Photocontrol of liposome permeability through oxidation of membrane additives such as NSH offers a potential means for controlled drug delivery and might he useful as an adjunct to photodynamic therapy.  相似文献   

5.
A high‐throughput miniaturized liquid–liquid extraction procedure followed by a simple ultra‐high performance liquid chromatography method coupled with fluorescence detection for bioanalytical analysis of all tocopherol isomers and retinol in human serum has been developed and validated. In the extraction procedure, a synthetic internal standard tocol was used, which does not occur in the human body. The separation of structurally related vitamins was achieved using a new generation of pentafluorophenyl propyl core–shell stationary phase with elution using methanol and an aqueous solution of ammonium acetate. The fluorescence of retinol and tocopherol isomers was detected at λex = 325, 295 nm and λem = 480, 325 nm, respectively. The rapid baseline separation of all analytes was accomplished within 4.0 min. The sensitivity of method was demonstrated with lower limits of quantification: retinol 0.01 μM, α‐tocopherol 0.38 μM, β‐tocopherol 0.18 μM, γ‐tocopherol 0.14 μM, and δ‐tocopherol 0.01 μM. Possible application of this method in clinical practice was confirmed by the analysis of human serum samples from healthy volunteers. Finally, the simultaneous determination of retinol and all tocopherol isomers in human serum can enable the clarification of their role in metabolism and in diseases such as cancer.  相似文献   

6.
Laser flash photolysis (LFP) of retinol in argon-saturated methanol gives rise to a transient at 580 nm (transient A). Formation of transient A is accompanied by a transient growth at 370 nm. The rate of this growth is retinol concentration-dependent. The transient growth at 370 nm was removed in the presence of N(2)O, which is known to scavenge solvated electrons. These results can be interpreted by formation of retinol˙(+) (λ(max) = 580 nm) and solvated electrons following LFP of retinol. Subsequently, the solvated electrons are rapidly scavenged by retinol to form retinol˙(-) (λ(max) = 370 nm in methanol). On the other hand, transient A is not ascribed to the retinyl cation, as was previously proposed, because the retinyl cation, generated from LFP of retinyl acetate, and transient A show different reactivities towards halide ions (e.g. k(Br) = 1.7 × 10(9) and 1.51 × 10(10) M(-1) s(-1) respectively, in acetonitrile). After demonstrating the identity of transient A as retinol˙(+), its reactions with carotenoids were examined in air-saturated polar solvents. In the presence of carotenoids, an enhancement in the decay of retinol˙(+) was observed and was accompanied by formation of the corresponding carotenoid radical cations via electron transfer from carotenoids to retinol˙(+). Furthermore, the reactivity of retinol˙(+) towards pyridine derivatives was investigated in air-saturated polar solvents. It was found that the decay of retinol˙(+) was accelerated with concomitant formation, with the same rate, of a transient at 370 nm. Similar observations were obtained with increasing pH of air-saturated aqueous 2% Triton X-100 of retinol˙(+). The 370 nm (or 380 nm in the case of Triton X-100) transient is attributed to the base adducts or deprotonated neutral radicals. On the basis of these results, the reactivities of the retinyl cation and retinol˙(+) are compared and the consequences of retinol˙(+) formation within biological environments are discussed.  相似文献   

7.
Nanoliposomes are important carriers capable of packaging drugs for various delivery applications through passive targeting tumor sites by enhancing permeability and retention effect. Radiolabeled liposomes have potential applications in radiotherapy and diagnostic imaging. However, the physico-chemical instability of liposomes during manufacturing and storage limits their extensive application. Therefore, considerable numbers of studies have been made on the stability of liposomes over the last few years in order to overcome this problem. In this study, we attempted to prepare polymer-coated liposomes using water-soluble chitosan in order to enhance the stability of rhenium(III) chloride-incorporated liposomes. They were characterized by an electrophoretic light-scattering spectrophotometer, Fourier transform infrared spectroscopy (FT-IR), UV–Vis spectrometer, and phase-contrast microscopy. The chitosan-coated liposomes are spherical and the particle size is about 800–850 nm. Incorporation of chitosan into the liposome bilayer decreased rhenium(III) chloride release from the liposome due to an increased rigidity of the liposome membrane structure. Chitosan-coated liposomes showed a higher stability compared with the stability of non-coated liposomes. The release characteristics of rhenium(III) chloride encapsulated in the liposome were taken as a measure of stability of the liposome membrane.  相似文献   

8.
The aim of the present work was to develop a simple and rapid method of retinol acetate, tocopherol acetate and coenzyme Q(10) determination in pharmaceuticals without involving any preparation operations like separation or masking. The values of second derivative amplitude at 212 nm for tocopherol, 351 nm for retinol and 222 nm for coenzyme were used for construction of calibration graphs. Beer's law is obeyed in the concentration range 0.5-20, 0.5-7.5 and 0.5-30 microg ml(-1) for retinol acetate, tocopherol acetate and coenzyme, respectively. The elaborated procedures were successfully applied to the simultaneous determination of studied compounds in their binary synthetic mixtures and in commercial preparations with high reliability and repeatability. Spectral properties of retinol acetate allows to determine its contents in ternary mixture which includes Vitamin E and coenzyme Q(10).  相似文献   

9.
We report on the time evolution of the aggregation behaviour of cationic liposome-polyelectrolyte complexes studied by means of dynamic light scattering technique. Pure dioleoyltrimethilammoniumpropane (DOTAP) and mixed DOTAP-dipalmitoylphosphatidylcholine (DPPC) liposomes in polyacrylate sodium salt aqueous solutions in a wide concentration range have been investigated and the size and size distributions of the resulting aggregates evaluated from the intensity autocorrelation function of the scattered light. Under appropriate conditions, we found two discrete aggregation regimes, resulting in two different structural arrangements, whose time evolution depends on the charge ratio and the polyelectrolyte molecular weight. A first small component of average size in the 100-500 range nm coexists with a larger component, whose typical size increases with time, up to some micrometers. The cluster growth from a single liposome, 70 nm in diameter, to the formation of polymer-coated liposome aggregates has been briefly discussed in the light of steric stabilization of colloids. Moreover, it has been found that the kinetics of aggregation of the larger, time-dependent, component follows a dynamical scaling within the diffusion-limited cluster aggregation (DLCA) regime. The understanding of structures resulting from interactions between polyelectrolytes with oppositely charged liposomes may help towards formulation of "lipoplexes" (cationic lipid-DNA complexes) to use as non-viral gene carriers.  相似文献   

10.
Abstract Laser flash photolysis of riboflavin tetrabutyrate incorporated in lecithin liposomes has been studied as a function of the number of flavins per liposome, NRFTB.
Both the flavin triplet decay rate and its susceptibility to quenching by oxygen and glycyl-tyrosine depend markedly on the value of NRFTB. The results are interpreted on the basis of the existence of two distinct locations for the flavin chromophore within the liposome structure.  相似文献   

11.
The kinetics of quenching of the all-trans-retinal triplet state by air oxygen in aqueous solutions of bovine serum albumin and in a cardiolipin liposome suspension was investigated by nanosecond laser photolysis. It was established that the quenching reaction rate constant in the albumin solution (1.8 × 108 l mol−1 s−1) was an order of magnitude less than in liposomes (3.1 × 109 l mol−1 s−1). These constants were 5.0 × 109 and 1.1 × 109 l mol−1 s−1 in methanol and aqueous solutions containing 10 vol % methanol, respectively. The effect of hindered oxygen access to the Lall-trans-retinal attached to albumin is discussed in terms of its influence on the photooxidation processes in the retina.  相似文献   

12.
Retinol neutral radicals (RS-retinol˙), generated from the reaction of retinol with 4-pyridylthiyl and 2-pyridylthiyl radicals in argon-saturated methanol, undergo β-elimination, which can be monitored via the slow secondary absorption rise at 380 nm attributed to the rearrangement of the unstable retinol neutral addition radicals to the more stable addition radicals. Rate constants for the β-elimination reactions (k(β)) of 4-PyrS-retinol˙ were measured at different temperatures and the Arrhenius equation for the reaction is described by log (k(β)/s(-1)) = (12.7 ± 0.2) - (54.3 ± 1.3)/θ, where θ = 2.3RT kJ mol(-1). The reactivities of retinol addition radicals (RS-retinol˙), generated from the reaction of retinol with various thiyl radicals, towards oxygen have also been investigated in methanol. In the presence of oxygen, the decay of RS-retinol˙ fits to biexponential kinetics and both observed rate constants for the RS-retinol˙ decay are oxygen-concentration dependent. This suggests that at least two thiyl addition radicals, formed from the reaction of RS˙ with retinol, undergo oxygen addition reactions. In light of the estimated rate constants for oxygen addition to RS-retinol˙ and RS-CAR˙ (CAR: carotenoid), the antioxidant-prooxidant properties of retinol are discussed.  相似文献   

13.
Spectral and kinetic characteristics of the triplet state of all-trans-retinal ( 3 ATR) in aqueous solutions of bovine serum albumin (BSA), interphotoreceptor retinal-binding protein (IRBP), and phosphatidylcholine (PC) liposomes have been studied by nanosecond flash photolysis. In the protein solutions, the decay kinetics of 3ATP obeys the two-exponential law (with the rate constants of 5 × 105 and 5 × 104 s?1). The introduction of liposomes into the protein solutions increases the contribution of the fast component and slows it down. The corresponding concentration dependence indicates that ATR remains localized in the proteins at the PC/protein molar ratio up to 100. The introduction of oxygen into the protein solutions has no effect on the rate constant of the slow component, but accelerates the fast component and increases its contribution. The efficiency of 3ATP quenching by molecular oxygen in the protein solutions is much lower than in water and liposomes. The photoprotective role of IRBP in the retinoid cycle is discussed.  相似文献   

14.
In order to design liposomes which release their contents in a glucose-sensitive manner, the surfaces of egg phosphatidylcholine (egg PC) liposomes or dioleoylphosphatidylethanolamine (DOPE) liposomes were modified with the copolymer of N-isopropylacrylamide/methacrylic acid/octadecylacrylate and hydrophobically modified glucose oxidase (EC 1.1.3.4.). Whichever the liposomes were prepared with egg PC or DOPE, an extensive release of calcein was observed at acidic conditions. And DOPE liposomes were more pH sensitive than egg PC liposomes in terms of the release. In glucose-dependent calcein release experiment, there was no release for 180 min when the suspension of liposome was free of glucose. When the glucose concentration was 50 mg/dl, no appreciable amount of calcein was released for the first 50 min, but a significant release was observed for the last 130 min. At glucose concentration of 200 mg/dl, calcein release became more extensive and the releases for 180 min from egg PC and DOPE liposome were 84% and 98%, respectively.  相似文献   

15.
Liposomes containing high concentrations of the anticancer drug doxorubicin, prepared by active-loading techniques, have been intensively investigated as potential agents for chemotherapy. The present study investigates the possibility of active uptake and photoinduced release of such solutes from liposomes incorporating a photoisomerizable lipid. The active loading of acridine orange and doxorubicin was investigated using liposomes containing entrapped ammonium sulfate. The liposomes were prepared with dipalmitoyl-L-alpha-phosphatidyl choline (DPPC) and a photochromic lipid, (1,2-(4'-n-butylphenyl)azo-4'-(gamma-phenylbutyroyl))-glycero-3- phosphocholine (Bis-Azo PC), which isomerizes on exposure to near-UV light with resulting changes in membrane permeability to solutes. The rate of loading of the vesicles below the phase transition temperature of DPPC was investigated as a function of Bis-Azo PC and cholesterol concentrations in the liposome. The rate of doxorubicin uptake was found to be greatly decreased in the presence of cholesterol, while below 30 degrees C the rate of acridine orange uptake was increased in the presence of cholesterol. On exposure to a single UV laser pulse, actively loaded acridine orange was rapidly released from liposomes containing Bis-Azo PC at a rate similar to that found for the indicator dye calcein. However while cholesterol had previously been shown to greatly enhance the rate of photo-induced calcein leakage, it had no significant effect on the rate of acridine orange release. After active loading into DPPC vesicles containing Bis-Azo PC, doxorubicin was also released after exposure to a single laser pulse, but at a rate slower than for acridine orange and calcein. The difference in behavior between these systems is ascribed to the interactions of acridine orange and doxorubicin with the liposome bilayer. Photoinduced release of pharmacologically active materials from sensitized liposomes might provide a useful adjunct or alternative to conventional photodynamic therapy.  相似文献   

16.
The adsorption of lysozyme and cytochrome C on phosphatidylcholine liposomes essentially changes the physical properties of the phospholipid membranes and under certain circumstances greatly affects the stability of the colloid dispersion by inducing bridging liposome flocculation. This study was designed to examine experimentally the influence of liposome size on two kinetic parameters of the flocculation, its rate constant and activation energy. As the liposome radius increased in the range 50-500 nm, the activation energy tended to decrease, resulting in an increased flocculation rate, except for the flocculation of 400-nm liposomes, which was greatly impeded. The pronounced influence of the liposome size on the flocculation rate constant was evident, since a well-defined minimum in the kinetic rate of flocculation of 400-nm liposomes was detected experimentally. The obtained nonlinear radius dependencies of the flocculation rates and activation energies are interpreted in terms of the bridging mechanism of the protein-induced liposome flocculation and the supplementary concept of the stability of thin liquid films formed between approaching protein-adsorbed liposomes. Copyright 2000 Academic Press.  相似文献   

17.
Abstract— The photochemistry and photophysics of 3-amino-6-io-doacridine (Acr-I) was studied. Photolysis (350 nm) of Acr-I (free base) generates products consistent with a free radical intermediate in methanol, benzene and carbon tetrachloride. The Acr-I hydrochloride is shown to bind to calf thymus DNA and to the self-complementary dinucleotide cytidylyl-(3′-5′)-guanosine (CpG) minidu-plex in a manner similar to that of proflavine (Acr-NH2), a known DNA intercalator. The Acr-I is shown to more efficiently nick supercoiled plasmid DNA pBR322 upon 350 nm or 420 nm photolysis than Acr-NH2. The efficiency of Acr-I-sensitized DNA nicking is not oxygen dependent. Photolysis of the Acr-I/(CpG)2 complex leads to cleavage of the dinucleotide and to cytidine base release by selective damage to a specific ribose moiety. Dinucleotide cleavage occurs equally well in the presence or absence of oxygen, thereby eliminating a singlet oxygen- or peroxyl radical-mediated process. Photolysis of Acr-I in the presence of a mononucleotide (GMP) or a non-self-complementary dinucleotide (uridylyl-[3′-5′]-cytidine– UpC) does not lead to fragmentation and base release. Similarly, photolysis of the Acr-NH2/(CpG)2 complex does not lead to fragmentation and base release. The data indicate that photolysis of an iodinated intercalator bound to CpG or plasmid DNA generates an intercalated aryl radical and that the reactive intermediate initiates a sequence of reactions that efficiently nick nucleic acids. The inactivation of Λ phage sensitized by Acr-I with UV (350 nm) light is oxygen independent but with visible (420 nm) light is strongly oxygen dependent. The Acr-I fluoresces more intensely when excited at 446 than at 376 nm. Thus, UV photolysis may lead to C-I bond homolysis and free radical formation, a process that is not energetically feasible with visible light. The results demonstrate the difficulty of extrapolating model studies involving simple molecules and DNA to understanding the mechanism of viral inactivation with a particular sensitizer.  相似文献   

18.
Abstract The lysis of phosphatidylcholine (PC) liposomes was sensitized to visible light (>500nm) by hematoporphyrin (HP) incorporated in the liposomes (0.09-1.5%, wt/wt) or in the external buffer (1-15 μM). The lytic mechanism changed from the Type II pathway mediated by singlet oxygen (1O2) at low HP concentrations to the anoxic, Type I pathway at high HP concentrations. Spectral measurements of HP in aqueous and organic solvents indicate that the HP was not aggregated (monomers and/or dimers) for Type II sensitization and aggregated for Type I conditions. High concentrations of azide (>0.1 M) or DABCO (>0.5 M) were protective with high HP concentration under oxic and anoxic conditions, which cannot involve the scavenging of 1O2. Feasible protective mechanisms are quenching of the HP triplet state by high azide and repair of the damaged membrane by DABCO via an electron transfer process. There was significant protection against lysis under Type I conditions by low concentrations of ferricyanide (>1 mM), indicative of an electron transfer mechanism. The incorporation of 22 mol % cholesterol in PC liposomes with 1% HP had no effect on the lytic efficiency for oxic and anoxic conditions. Dipalmitoylphosphatidylcholine liposomes incorporating 1% HP showed negligible photosensitized lysis at 50°C compared with PC liposomes with 1% HP at 25°C. The promotion of photosensitized lysis by hydrodynamic agitation observed in prior work with methylene blue (Grossweiner and Grossweiner, 1982) was significant with HP sensitization for both Type I and Type II conditions. Actinometry with PC liposomes incorporating 1% HP indicated that photosensitized lysis was very inefficient, requiring many absorbed quanta per lysed liposome. Preliminary experiments with crude hematoporphyrin derivative (Hpd) showed similar concentration effects on lytic efficiency, where PC liposomes incorporating 0.1% (wt/wt) Hpd were strongly sensitized by oxygen, whereas sensitization by oxygen was insignificant with 3.1% Hpd. The results with HP and crude Hpd indicate that lytic damage in a biomembrane does not necessarily require oxygenation.  相似文献   

19.
A series of novel calix[4]arene enones (5-7) and cinnamates (12-14) have been synthesized and evaluated for ensuring protection from ultraviolet radiation (UVR). Spectroscopic analyses has revealed that compound 6 absorbs ultraviolet radiations between 280 and 350 nm with an absorption maximum at 312 nm. Its molar absorption coefficient (ε) (>5 × 10(4)M(-1)cm(-1)) and bandwidth are larger than those for the commercially used sun protectants (oxybenzone (OB), 2-ethylhexyl 4-methoxycinnamate (OMC) and avobenzone). The in vitro Sun Protection Factor (SPF) measurement revealed an SPF of 5.2 at 2% concentration of 6 in home made emulsion formulations while combination of 2% each of 6 and OMC gave an SPF of 8.8. Lower sun protection seems to be compensated by significant protection from more harmful UVA radiations (UVA/UVB absorbance ratio of 0.62).  相似文献   

20.
Intramolecular processes occurring in a photobifunctional compound (PBC) comprising the spironaphthopyran and hydroxyazomethine moieties have been studied in methanol solutions by femtosecond laser photolysis using light with wavelengths of 340 and 490 nm. At the excitation wavelength of 490 nm, the cis-trans photoisomerization in the azomethine moiety occurs in the S1 state. In the case of PBC photolysis with 340-nm light, the opening of the spiro bond of the spiropyran moiety (formation of the X form) also takes place during relaxation of the Sn state to the S1 state followed by isomerization to the merocyanine form. The spectral and kinetic characteristics of different electronically excited have been were determined. The data have been compared with those of nanosecond laser photolysis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号