首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
In order to enhance the mechanical properties of wet gels for aerogel production, aging studies by using three different routes was performed. The wet gels were prepared from a polyethoxydisiloxane precursor by using HF as a catalyst. The three different aging routes studied were i) aging in sealed mould, ii) aging in solvent and iii) aging in simulated pore liquid, i.e. a solvent with small amounts of water and HF resembling the mother liquor. All aging processes gave stronger and stiffer wet gels however, a maximum in strength and stiffness was observed after a certain aging time. The simulated pore liquids allowed short aging time in the range of 8 h to achieve the maximum mechanical strength, however the maximum in strength was lower than for the other two aging routes. From the wet gels, monolithic and transparent aerogels were obtained by supercritical drying at small-, mid- and large-scale. The aging strengthening process was successfully transferred to larger scales giving both lower density and higher transparency compared to small-scale.  相似文献   

2.
We describe a sol-gel approach by which iron hexacyanoferrate is immobilized in silica in a manner suited to investigation by electrochemistry in the absence of a contacting liquid phase. Such physicochemical parameters as concentration of redox sites (C o) and apparent (effective) diffusion coefficient (D app) are estimated by performing cyclic voltammetric and potential step experiments in two time regimes, which are characterized by linear and spherical diffusional patterns, respectively. Values of D app and C o thereby obtained are 2.0 × 10−6 cm2 s−1 and 1.4 × 10−2 mol dm−3. The D app value is larger than expected for a typical solid redox-conducting material. Analogous measurements done in iron(III) hexacyanoferrate(III) solutions of comparable concentrations, 1.0 × 10−2 and 5.0 × 10−3 mol dm−3, yield D app on the level of 5–6 × 10−6 cm2 s−1. Thus, the dynamics of charge propagation in this sol-gel material is almost as high as in the liquid phase. The residual water in the silica, along with the pore structure, are important to the overall mechanism of charge transport, which apparently is limited by physical diffusion rather than electron self-exchange. Under conditions of a solid state voltammetric experiment which utilizes an ultramicroelectrode, encapsulated iron hexacyanoferrate redox centers seem to be in the dispersed colloidal state rather than in a form of the rigid polymeric film. Received: 8 April 1999 / Accepted: 13 August 1999  相似文献   

3.
CO rebinding kinetics after nanosecond photolysis of myoglobin encapsulated in wet silica gels exhibits an enhanced geminate phase that allows the determination of the microscopic rate constants and the activation barriers for distinct ligand docking sites inside the protein matrix. Using a maximum entropy method, we demonstrate that the geminate phase can be well-described by a biphasic lifetime distribution, reflecting rebinding from the distal and proximal sites. Microscopic rates and activation barriers were estimated using a four-state model.  相似文献   

4.
Small-angle X-ray scattering (SAXS) was employed to study the nanostructural properties of poly(ethylene glycol)(PEG)/silica hybrid wet gels prepared from hydrolysis of tetraethoxysilane (TEOS) in mixtures with PEG/(PEG + TEOS) molar ratio in the nominal range between 0 and 0.8. The SAXS pattern was found to be well fitted by the scattering from a polymeric particle of radius of gyration R g with an internal structure of primary silica particles described by a polymeric constraint of a mass-fractal of dimension D. R g increases with the PEG quantity while D first increases from 2.24 for the pure TEOS-derived gel to reach values between 2.46 and 2.40 with the additions of PEG. The correlation volume V c as determined by SAXS for such a polymeric structure behaves as a volume-fractal and accordingly scales with R g as V c ~ R g D . An overall mean value of about 1 nm could be estimated as an upper limit for the radius of the primary silica particle building up the structure of all the wet gels, independent of the PEG addition.  相似文献   

5.
Absorption spectra and picosecond dynamics of the singlet exciton states of benzil and p-terphenyl in a microcrystal have been measured for the first time by analyzing the diffuse reflected spectra of the picosecond continuum.  相似文献   

6.
7.
Aluminum and zinc phthalocyanines (AlPc and ZnPc, respectively) adsorbed on the surface of silica nanoparticles (60 nm in diameter) in aqueous solutions have been found to form H-aggregates, which possess characteristic absorption spectra with bands (having a maximum at 640 nm) in a shorter wavelength region with respect to the main Q-band of the monomer (having a maximum at 670 nm). For AlPc on the surface, J-aggregates of two types (long-wavelength bands with maximums at 740 and 770 nm) are also observed. Using nanosecond laser photolysis (with the excitation wavelength of 337 nm) in deoxygenated solutions of AlPc on the surface, the formation of the triplet electronically excited states of J-aggregates has been detected, which are characterized by a broad absorption spectrum in the region of 400–800 nm and a lifetime of 360 μs. No intermediate products have been detected during the photolysis of H-aggregates of ZnPc on the surface.  相似文献   

8.
Photochemical profiles of beta-bond dissociation in highly excited triplet states (Tn) of biphenyl derivatives having C-O bonds were investigated in solution, using stepwise laser photolysis techniques. The lowest triplet states (T1) were produced by triplet sensitization of acetone (Ac) upon 308-nm laser photolysis. The molar absorption coefficients of the T1 states were determined using triplet sensitization techniques. Any photochemical reactions were absent in the T1 states. Upon 355-nm laser flash photolysis of the T1 states, they underwent fragmentation, because of homolysis of the C-O bond in the Tn states from the observations of the transient absorption of the corresponding radicals. The quantum yields (Phidec) for the decomposition of the T1 states upon the second 355-nm laser excitation were determined. Based on the Phidec values and the bond dissociation energies (BDEs) for the C-O bond fission, the state energies (ERT) of the reactive highly excited triplet states (TR) were determined. It was revealed that (i) the Phidec was related to the energy difference (DeltaE) between the BDE and the ERT, and (ii) the rate (kdis) of beta-cleavage in the TR state was formulated as being simply proportional to DeltaE. The reaction mechanism for beta-bond cleavage in the TR states was discussed.  相似文献   

9.
It is shown that the long-lived transient absorption which is observed when solutions of cryptocyanine and DDI (1, 1′-diethyl-2, 2′-dicarbocyanine iodide) in methanol and other alcohols are exposed to nanosecond ruby laser pulses arises from a photoproduct whose formation requires consecutive absorption of two photons.  相似文献   

10.
Journal of Sol-Gel Science and Technology - This work is a new approach to the study of the structural, mechanical and absorption properties of hybrid organic/inorganic silica-based aerogels....  相似文献   

11.
The decay kinetics of the triplet states and radicals of riboflavin and flavin mononucleotide, which were introduced into the bovine eye lens as kinetic photochemical probes, was studied by nanosecond laser photolysis, as a function of dilution of the lens with water. Correlations were found between the kinetic parameters and the degree of ordering of crystallins in the aqueous solution of the lens.  相似文献   

12.
The photochemistry of maleimide in aqueous solution is governed by the coexistence of up to three different triplet states, the keto triplet (lambda(max)=250, 330 nm, lambda(min)=290 nm, pK(a)=4.4+/-0.1, tau=5 micros), the deprotonated or enolate triplet (lambda(max)=360, 260 nm, lambda(min)=320 nm, shoulder at 370-380 nm) and a dimer triplet. This biradical is formed by the addition of the keto triplet to the double bond of a ground state maleimide in competition with electron transfer, (k( (3)MI+MI)=2.6 x 10(9) dm(3) mol(-1) s(-1)). Its spectrum is identical to that of the maleimide H-adduct radical (lambda(max)=370-380 (broad), 255 nm (narrow), lambda(min)=290 nm) and its lifetime is 110 ns. While protolysis is confined to maleimide and aqueous solutions, the dimer triplet is also found in acetonitrile. Dimer triplet formation is also observed with N-ethylmaleimide. Time-resolved conductometry and buffer experiments were used to characterise excited state protolysis. Multi-wavelength "global analysis" of the time profiles allowed the separation of the transient spectra and study of the kinetics of the monomer and dimer triplets. The cyclobutane dimer yield (determined by GC) is independent of maleimide concentration. This indicates that the dimer triplet does not contribute significantly to the initiation of free-radical polymerisation. Time-dependent Hartree-Fock calculations agree with the experimental data and further confirm the proposed mechanisms.  相似文献   

13.
The electron spin in the triplet ground state of diphenylmethylene is found to be oriented predominantly in the plane perpendicular to the long molecular axis after the photo-dissociation reaction of diphenyldiazomethane. The spin selectivity of the intersystem crossing which occurs when the methylene relaxes to its ground state is suggested as the orientation mechanism. The combined spin echo and laser photolysis are shown to be very suitable for this kind of investigation.  相似文献   

14.
15.
Laser excitation of aqueous solutions of fenofibric acid (FA) at pH 7.4 show the formation of two reaction intermediates, the triplet state and the hydrated electron. The former is longer lived in water than in acetonitrile; its anionic form decays irreversibly by decarboxylation to give a carbanion that protonates before or after rearrangement. Several spectroscopic and quenching studies suggest that in aqueous media the triplet state of FA has a pi,pi* character, in comparison with an n,pi* character in organic media. Further, the known chemistry of the triplet, including decarboxylation and hydrogen abstraction, occurs predominantly from the n,pi* state, and as a consequence, activation energies are higher when the lowest triplet has a pi,pi* character. Photoionization is more important in aqueous than in organic media and involves a biphotonic process. Hydrated electrons are trapped by FA, leading to the corresponding ketyl radical after protonation.  相似文献   

16.
Laser-induced fluorescence and dispersed fluorescence spectra measured in supersonic jets for 9,10,19,20-tetra-n-methylporphycene and 9,10,19,20-tetra-n-propylporphycene reveal, for both compounds, the presence of two different species which are assigned to trans and cis tautomeric forms. Doublet splitting of lines is observed, disappearing upon deuteration of the inner nitrogen atoms. This finding is interpreted as an indication of double hydrogen tunneling. The values of tunneling splitting are obtained for both ground and lowest singlet excited states. The splitting is similar for cis and trans forms, and the barrier for tautomerization is larger in the excited state. Due to the coupling of hydrogen motion with rotation of alkyl substituents, tautomerization occurs in an asymmetric double minimum potential, with the ordering of energy minima reversed upon excitation. The second singlet excited state is found to lie very close to S(1), thus facilitating an efficient radiationless depopulation.  相似文献   

17.
The excited state of pyrene observed in fluorescence and pulsed laser techniques is used to show that pyrene is solubilized in the polymer coil of aqueous solution of polymethacrylic acid (PMA) at pH < 4–5. This leads to a decreased access of molecules such as I?, Tl+, CH3NO2, and O2 to excited pyrene in the polymer coil. The protection of the excited state by solubilization in the polymer is sufficient to enable 3-bromopyrene phosphorescence to be observed at room temperature in these systems. Increasing the pH of the system uncoils the polymer and leads to increased accessibility of excited pyrene to CH3NO2; eventually, at pH >5, the pyrene is ejected into the aqueous phase of the system. In the presence of micellar solutions of surfactants increasing pH transports the pyrene from the polymer to the micellar aggregates. These fluorescence techniques are used to investigate the kinetics of expansion of the polymer coil. The system is suggested as a suitable model for the interaction of pyrene with biopolymers such as DNA.  相似文献   

18.
The Diffusion Structural Analysis (DSA) is described as a new tool for characterization of the processes taking place during preparation of ceramics and glasses from gels. Examples of the DSA application in the silica gels preparation from TEOS are demonstrated. The DSA results are compared with the results of optical transparency and pH measurements during sol-gel transition.  相似文献   

19.
We report the synthesis and characterization of a hydroxo-bridged dinuclear phenanthroline cupric complex, [(phen)2Cu-OH-Cu(phen)2](ClO4)) (HPC, phen = phenanthroline), dispersed in molecular sieves: MCM-41's and sodium zeolite Y. We employed spectroscopic techniques (FT-IR, UV-visible, EPR, and EXAFS) to characterize and study the catalytic activities of immobilized HPC in the oxidation of 3,5-di-tert-butylcatechol (DTBC) to the corresponding quinone (3,5-di-tert-butylquinone, DTBQ) to mimic the functionality of catechol oxidases. HPC complexes can adsorb only on the outside surface of the Y zeolite due to its smaller pore size. The EXAFS spectrum gives 3.51 A for the Cu...Cu distance in HPC encapsulated in the nanochannels of Al-MCM-41 mesoporous solids, which is comparable to the O...O distance of the two hydroxyl groups of DTBC, and this made a simultaneous coordination of the diol group to the dicupric center possible. The resultant complex then allows the transfer of two electrons from DTBC to the dicupric center leading to the production of DTBQ. The nanochannels of calcined Al-MCM-41 mesoporous solids provide stability, due to confined space and surface charge, which could prevent excessive separation of the dinuclear cupric centers after removal of the hydroxo bridge in the catalytic process. A catalytic reaction scheme is proposed based on the spectroscopic data obtained in the characterization. The study demonstrates that HPC encapsulated in the nanochannels of Al-MCM-41 mesoporous materials could be a viable system for a broad range of catalytic oxidation to mimic natural occurring enzymes.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号