首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The design and synthesis of a series of bis‐indole carboxamides with varying amine containing side chains as G‐quadruplex DNA stabilising small molecules are reported. Their interactions with quadruplexes have been evaluated by means of Förster resonance energy transfer (FRET) melting analysis, UV/Vis spectroscopy, circular dichroism spectroscopy and molecular modelling studies. FRET analysis indicates that these ligands exhibit significant selectivity for quadruplex over duplex DNA, and the position of the carboxamide side chains is of paramount importance in G‐quadruplex stabilisation. UV/Vis titration studies reveal that bis‐indole ligands bind tightly to quadruplexes and show a three‐ to fivefold preference for c‐kit2 over h‐telo quadruplex DNA. CD studies revealed that bis‐indole carboxamide with a central pyridine ring induces the formation of a single, antiparallel, conformation of the h‐telo quadruplex in the presence and absence of added salt. The chirality of h‐telo quadruplex was transferred to the achiral ligand (induced CD) and the formation of a preferred atropisomer was observed.  相似文献   

2.
In this contribution, we report that a self-assembled platinum molecular square [Pt(en)(4,4'-dipyridyl)]4 can act as an efficient G-quadruplex binder and telomerase inhibitor. Molecular modeling studies show that the square arrangement of the four bipyridyl ligands, the highly electropositive nature of the overall complex, as well as hydrogen bonding interactions between the ethylenediamine ligands and phosphates of the DNA backbone all contribute to the observed strong binding affinity to the G-quadruplex. Through thermal denaturation studies with duplex and quadruplex FRET probes and enzymatic assays, we demonstrate that this platinum square strongly binds to G-quadruplexes and can act as an inhibitor of telomerase. This study thus shows the potential of supramolecular self-assembly to readily generate scaffolds of unique geometries for effective targeting of G-quadruplexes and for the ultimate development of selective antitumor therapies.  相似文献   

3.
设计合成了3个多胺取代的小檗碱衍生物5a~5c, 并利用圆二色(CD)光谱、 荧光共振能量转移(FRET)熔点实验、 荧光光谱和聚合酶链反应(PCR)终止实验等手段研究了小檗碱衍生物5a~5c与端粒DNA的相互作用. 结果表明, 小檗碱衍生物5a~5c可以诱导端粒DNA序列形成反平行结构G-四链体, 显著地提高了端粒G-四链体的稳定性, 有效地抑制了端粒的扩增; 而与双链DNA的相互作用则很小, 是高选择性的端粒G-四链体配体.  相似文献   

4.
Various biologically relevant G-quadruplex DNA structures offer a platform for therapeutic intervention for altering the gene expression or by halting the function of proteins associated with telomeres. One of the prominent strategies to explore the therapeutic potential of quadruplex DNA structures is by stabilizing them with small molecule ligands. Here we report the synthesis of bisquinolinium and bispyridinium derivatives of 1,8-naphthyridine and their interaction with human telomeric DNA and promoter G-quadruplex forming DNAs. The interactions of ligands with quadruplex forming DNAs were studied by various biophysical, biochemical, and computational methods. Results indicated that bisquinolinium ligands bind tightly and selectively to quadruplex DNAs at low ligand concentration (~0.2-0.4 μM). Furthermore, thermal melting studies revealed that ligands imparted higher stabilization for quadruplex DNA (an increase in the T(m) of up to 21 °C for human telomeric G-quadruplex DNA and >25 °C for promoter G-quadruplex DNAs) than duplex DNA (ΔT(m) ≤ 1.6 °C). Molecular dynamics simulations revealed that the end-stacking binding mode was favored for ligands with low binding free energy. Taken together, the results indicate that the naphthyridine-based ligands with quinolinium and pyridinium side chains form a promising class of quadruplex DNA stabilizing agents having high selectivity for quadruplex DNA structures over duplex DNA structures.  相似文献   

5.
The folding of the single-stranded 3' end of the human telomere into G-quadruplex arrangements inhibits the overhang from hybridizing with the RNA template of telomerase and halts telomere maintenance in cancer cells. The ability to thermally stabilize human telomeric DNA as a four-stranded G-quadruplex structure by developing selective small molecule compounds is a therapeutic path to regulating telomerase activity and thereby selectively inhibit cancer cell growth. The development of compounds with the necessary selectivity and affinity to target parallel-stranded G-quadruplex structures has proved particularly challenging to date, relying heavily upon limited structural data. We report here on a structure-based approach to the design of quadruplex-binding ligands to enhance affinity and selectivity for human telomeric DNA. Crystal structures have been determined of complexes between a 22-mer intramolecular human telomeric quadruplex and two potent tetra-substituted naphthalene diimide compounds, functionalized with positively charged N-methyl-piperazine side-chains. These compounds promote parallel-stranded quadruplex topology, binding exclusively to the 3' surface of each quadruplex. There are significant differences between the complexes in terms of ligand mobility and in the interactions with quadruplex grooves. One of the two ligands is markedly less mobile in the crystal complex and is more quadruplex-stabilizing, forming multiple electrostatic/hydrogen bond contacts with quadruplex phosphate groups. The data presented here provides a structural rationale for the biophysical (effects on quadruplex thermal stabilization) and biological data (inhibition of proliferation in cancer cell lines and evidence of in vivo antitumor activity) on compounds in this series and, thus, for the concept of telomere targeting with DNA quadruplex-binding small molecules.  相似文献   

6.
A single-stranded human telomere DNA sequence can fold into an intramolecular G-quadruplex structure, which has been shown to inhibit telomerase activity. Small molecules that selectively target and stabilise the G-quadruplex structure have been proposed as potential anticancer drugs. In this study, we analysed the properties of binding of malachite green, a cationic triphenylmethane dye, to the G-quadruplex of d[(T2AG3)4] by UV spectroscopy of thermal melting analysis, a competitive equilibrium dialysis assay, and absorption and circular dichroism spectroscopies. When binding to malachite green, the quadruplex structure that formed in the presence of K+ ions was stabilised with an increase in melting temperatures by 6 °C. Malachite green showed selective binding to the G-quadruplex in the presence of duplex and single-stranded DNAs, owing to which it presents higher potential for anticancer therapy, compared to other triphenylmethane dyes. The induced signals of circular dichroism indicate that the binding mode of malachite green involves intercalation between adjacent guanine tetrads of the G-quadruplex.  相似文献   

7.
A series of dinuclear ruthenium(II) complexes were synthesised, and the complexes were determined to be new highly selective compounds for binding to telomeric G‐quadruplex DNA. The interactions of these complexes with telomeric G‐quadruplex DNA were studied by using circular dichroism (CD) spectroscopy, fluorescence resonance energy transfer (FRET) melting assays, isothermal titration calorimetry (ITC) and molecular modelling. The results showed that the complexes 1 , 2 and 4 induced and stabilised the formation of antiparallel G‐quadruplexes of telomeric DNA in the absence of salt or in the presence of 100 mM K+‐containing buffer. Furthermore, complexes 1 and 2 strongly bind to and effectively stabilise the telomeric G‐quadruplex structure and have significant selectivity for G‐quadruplex over duplex DNA. In comparison, complex 3 had a much lesser effect on the G‐quadruplex, suggesting that possession of a suitably sized plane for good π–π stacking with the G‐quadruplets is essential for the interaction of the dinuclear ruthenium(II) complexes with the G‐quadruplex. Moreover, telomerase inhibition by the four complexes and their cellular effects were studied, and complex 1 was determined to be the most promising inhibitor of both telomerase and HeLa cell proliferation.  相似文献   

8.
Targeting the interface between DNA quadruplex and duplex regions by small molecules holds significant promise in both therapeutics and nanotechnology. Herein, a new pharmacophore is reported, which selectively binds with high affinity to quadruplex–duplex junctions, while presenting a poorer affinity for G-quadruplex or duplex DNA alone. Ligands complying with the reported pharmacophore exhibit a significant affinity and selectivity for quadruplex–duplex junctions, including the one observed in the HIV-1 LTR-III sequence. The structure of the complex between a quadruplex–duplex junction with a ligand of this family has been determined by NMR methods. According to these data, the remarkable selectivity of this structural motif for quadruplex–duplex junctions is achieved through an unprecedented interaction mode so far unexploited in medicinal and biological chemistry: the insertion of a benzylic ammonium moiety into the centre of the partially exposed G-tetrad at the interface with the duplex. Further decoration of the described scaffolds with additional fragments opens up the road to the development of selective ligands for G-quadruplex-forming regions of the genome.  相似文献   

9.
Electrospray ionization mass spectrometry (ESI-MS) and spectroscopic studies in solution were used to evaluate the self-association, G-quadruplex DNA binding, and selectivity of a series of perylene diimides (PDIs) (PIPER, Tel01, Tel11, Tel12, and Tel18) or benzannulated perylene diimide ligands (Tel34 and Tel32). Fluorescence and resonance light scattering spectra of Tel01, Tel12, Tel32, and Tel34 reveal that these analogs undergo self-association in solution. UV-Vis and fluorescence titrations with G-quadruplex, duplex, or single-stranded DNA demonstrate that all the analogs, with the exception of Tel32, bind to G-quadruplex DNA, with those PDIs that are self-associated in solution showing the highest degree of selectivity for binding G-quadruplex DNA. Parallel ESI-MS analysis of the stoichiometries demonstrates the ability of the ligands, with the exception of Tel32, to bind to G-quadruplex DNA. While most ligands show major 1:1 and 2:1 binding stoichiometries as expected in the case of end-stacking, interestingly, three of the most quadruplex-selective ligands show a different behavior. Tel01 forms 3:1 complexes, while Tel12 and Tel32 only form 1:1 complexes. Collisional activation dissociation patterns are compatible with ligand binding to G-quadruplex DNA via stacking on the ends of the terminal G-tetrads. Experiments with duplex and single strand DNA were performed to assess the binding selectivities of the ligands. PIPER, Tel11, and Tel18 demonstrated extensive complexation with duplex DNA, while Tel11 and Tel18 bound to single strand DNA, confirming the lack of selectivity of these two ligands. Our results indicate that Tel01, Tel12, and Tel34 are the most selective for G-quadruplex DNA.  相似文献   

10.
Fifteen complexes of palladium, platinum, and copper, featuring five different N‐donor tridentate (terpyridine‐like) ligands, were prepared with the aim of testing their G‐quadruplex–DNA binding properties. The fluorescence resonance energy transfer melting assay indicated a striking positive effect of palladium on G‐quadruplex DNA stabilization compared with platinum and copper, as well as an influence of the structure of the organic ligand. Putative binding modes (noncoordinative π stacking and base coordination) of palladium and platinum complexes were investigated by ESI‐MS and UV/Vis spectroscopy experiments, which all revealed a greater ability of palladium complexes to coordinate DNA bases. In contrast, platinum compounds tend to predominantly bind to quadruplex DNA in their aqua form by noncoordinative interactions. Remarkably, complexes of [Pd(ttpy)] and [Pd(tMebip)] (ttpy=tolylterpyridine, tMebip=2,2′‐(4‐p‐tolylpyridine‐2,6‐diyl)bis(1‐methyl‐1H‐benzo[d]imidazole)) coordinate efficiently G‐quadruplex structures at room temperature in less than 1 h, and are more efficient than their platinum counterparts for inhibiting the growth of cancer cells. Altogether, these results demonstrate that both the affinity for G‐quadruplex DNA and the binding mode of metal complexes can be modulated by modifying either the metal or the organic ligand.  相似文献   

11.
The DNA duplex binding properties of previously reported dinuclear Ru(II) complexes based on the ditopic ligands tetrapyrido[3,2-a:2',3'-c:3',2'-h:2',3'-j]phenazine (tppz) and tetraazatetrapyrido[3,2-a:2'3'-c:3',2'-l:2',3'-n]pentacene (tatpp) are reported. Photophysical and biophysical studies indicate that, even at high ionic strengths, these complexes bind to duplex DNA, through intercalation, with affinities that are higher than any other monointercalating complex and are only equalled by DNA-threaded bisintercalating complexes. Additional studies at high ionic strengths using the 22-mer d(AG(3)[T(2)AG(3)](3)) [G3] human telomeric sequence reveal that the dinuclear tppz-based systems also bind with high affinity to quadruplex DNA. Furthermore, for these complexes, quadruplex binding is accompanied by a distinctive blue-shifted "light-switch" effect, characterized by higher emission enhancements than those observed in the analogous duplex effect. Calorimetry studies reveal that the thermodynamics of duplex and quadruplex binding is distinctly different, with the former being entirely entropically driven and the latter being both enthalpically and entropically favored.  相似文献   

12.
Effect of loop orientation on quadruplex-TMPyP4 interaction   总被引:1,自引:0,他引:1  
G-quadruplexes are believed to be potential targets for therapeutic intervention and this has resulted in designing of various quadruplex interacting ligands. Moreover, reports about existence of quadruplex forming sequences across the genome have propelled greater interest in understanding their interaction with small molecules. An intramolecular quadruplex sequence can adopt different conformations, owing to different orientation of loops in the structure. The differences in the loop orientation can affect their molecular recognition. Herein, we have studied the interaction of 5,10,15,20-tetrakis(1-methyl-4-pyridyl)-21H, 23H-porphine (TMPyP4), a well-known G quadruplex binding ligand with three DNA quadruplexes differing in loop orientations. Results obtained from UV, ITC, and SPR studies have coherently revealed that the TMPyP4 molecule shows preferential binding to parallel G-quadruplex ( c-myc and c-kit) over its antiparallel counterpart (human telomeric). The binding affinity for parallel quadruplex was (10(7)) 1 order of magnitude higher than that for antiparallel DNA quadruplex (10 ). The study shows two binding modes, stronger binding (10(7)) of TMPyP4 involving end stacking and a weaker external binding (10 ), while TMPyP4 shows only one binding mode with duplex with a binding affinity of the order of 10(6). Overall, the study emphasizes that differences in the loop orientation give rise to different conformations of quadruplex, which in turn govern its binding to small molecules, and thereby play a pivotal role in molecular recognition.  相似文献   

13.
Four dinuclear terpyridineplatinum(II) (Pt–terpy) complexes were investigated for interactions with G‐quadruplex DNA (QDNA) and duplex DNA (dsDNA) by synchrotron radiation circular dichroism (SRCD), fluorescent intercalator displacement (FID) assays and fluorescence resonance energy transfer (FRET) melting studies. Additionally, computational docking studies were undertaken to provide insight into potential binding modes for these complexes. The complexes demonstrated the ability to increase the melting temperature of various QDNA motifs by up to 17 °C and maintain this in up to a 600‐fold excess of dsDNA. This study demonstrates that dinuclear Pt–terpy complexes stabilise QDNA and have a high degree of selectivity for QDNA over dsDNA.  相似文献   

14.
We describe the first G-quadruplex targeting approach that combines intercalation and hybridization strategies by investigating the interaction of a G-rich peptide nucleic acid (PNA) acridone conjugate 1 with a three-repeat fragment of the human telomere G 3 to form a hybrid PNA-DNA quadruplex that mimicks the biologically relevant (3+1) pure DNA dimeric telomeric quadruplex. Using a combination of UV and fluorescence spectroscopy, circular dichroism (CD), and mass-spectrometry, we show that PNA 1 can induce the formation of a bimolecular hybrid quadruplex even at low salt concentration upon interaction with a single-stranded three-repeat fragment of telomeric DNA. However, PNA 1 cannot invade a short fragment of B-DNA even if the latter contains a CCC motif complementary to the PNA sequence. These studies could open up new possibilities for the design of a novel generation of quadruplex ligands that target not only the external features of the quadruplex but also its central core constituted by the tetrads themselves.  相似文献   

15.
Photosensitizers that gather high photo-oxidizing power and strong visible-light absorption are of great interest in the development of new photo-chemotherapeutics. Indeed, such compounds constitute attractive candidates for the design of type I photosensitizers that are not dependent on the presence of oxygen. In this paper, we report on the synthesis and studies of new ruthenium(II) complexes that display strong visible-light absorption and can oxidize guanine residues under visible-light irradiation, as evidenced by nanosecond transient absorption spectroscopy. The reported compounds also tightly bind to G-quadruplex DNA structures from the human telomeric sequence (TTAGGG repeat). The kinetic and thermodynamic parameters of the interaction of these Ru(II) complexes with G-quadruplex and duplex DNA were studied thanks to luminescence titrations and bio-layer interferometry measurements, which revealed higher affinities towards the non-canonical G-quadruplex architecture. Docking experiments and non-covalent ionic analysis allowed us to gain information on the mode and the strength of the interaction of the compounds towards G-quadruplex and duplex DNA. The different studies emphasize the substantial influence of the position and the number of non-chelating nitrogen atoms on the interaction with both types of DNA secondary structures.  相似文献   

16.
Three novel ligands H4Ln (n = 1–3) and their copper(II) and zinc(II) complexes were prepared and characterized on the basis of elemental analyses, molar conductivity, 1H NMR, UV/Vis, and IR spectroscopy as well as mass spectrometry. DNA binding properties of the ligands and their complexes were investigated by absorption spectroscopy, ethidium bromide displacement experiments, and viscosity measurements. The experimental results indicate that the new ligands and their complexes can bind to DNA and the binding affinities of the complexes are higher than those of the ligands. In addition, the antioxidant activity of the ligands and complexes was determined by superoxide and hydroxyl radical scavenging methods in vitro, indicating that the complexes exhibit more effective antioxidant activity than the ligands alone.  相似文献   

17.
Two novel [2+2] metallo‐assemblies based on a guanosine‐substituted terpyridine ligand ( 1 ) coordinated to palladium(II) ( 2 a ) and platinum(II) ( 2 b ) are reported. These supramolecular assemblies have been fully characterized by NMR spectroscopy, ESI mass spectrometry and elemental analyses. The palladium(II) complex ( 2 a ) has also been characterized by single crystal X‐ray diffraction studies confirming that the system is a [2+2] metallo‐rectangle in the solid state. The stabilities of these [2+2] assemblies in solution have been confirmed by DOSY studies as well as by variable temperature 1H NMR spectroscopy. The ability of these dinuclear complexes to interact with quadruplex and duplex DNA was investigated by fluorescent intercalator displacement (FID) assays, fluorescence resonance energy transfer (FRET) melting studies, and electrospray mass spectrometry (ESI‐MS). These studies have shown that both these assemblies interact selectively with quadruplex DNA (human telomeric DNA and the G‐rich promoter region of c‐myc oncogene) over duplex DNA, and are able to induce dimerization of parallel G‐quadruplex structures.  相似文献   

18.
G-quadruplex DNA-specific ligands were generated using a combinatorial selection of tetrapeptides which were then conjugated to a hemicyanine scaffold. The heterocycle enhanced peptide binding affinity by approximately 1000-fold to give ligands with near micromolar affinity and >40-fold discrimination for quadruplex DNA over duplex.  相似文献   

19.
A series of cyclometallated 2-phenylpyridine Pt(II) complexes having N-benzoyl thiourea derivatives as ancillary ligands were prepared and characterised by elemental analysis, IR and UV–Vis spectroscopy, 1H and 13C NMR spectroscopy as well as by X-ray diffraction on single-crystal. All complexes were obtained as a single isomer with N atom of the 2-phenylpyridine ligand and S atom of the N-benzoyl thiourea derivatives coordinated in trans positions to the platinum metal as evidenced by using X-ray crystallography and NMR spectroscopy. All Pt(II) complexes show good luminescence properties at room temperature, both in dichloromethane solution and in solid state.  相似文献   

20.
Nucleic (DNA) acids having contiguous stretch of G sequence form quadruplex structure, which is very critical to control cell division. Recently the existence of G-quadruplex in RNA is also reported in presence of monovalent metal ion. PNA is a promising DNA analogue which binds strongly to DNA to form PNA:DNA duplex or PNA(2):DNA triplex. PNA also forms quadruplexes such G-quadruplex and i-motif in G and C-rich sequences respectively. aep-PNA containing a prolyl ring is one of several PNA analogues that provide rigidity and chirality in backbone and has binding affinity to natural DNA which is higher than that of PNA. Here we examine the ability of aep-PNA-G to form a quadruplex by UV, CD and mass spectroscopic techniques.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号