首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
An elastic membrane backed by a fluid-filled cavity in an elastic body is set into an infinite plane baffle. A time harmonic wave propagating in the acoustic fluid in the upper half-space is incident on the plane. It is assumed that the densities of this fluid and the fluid inside the cavity are small compared with the densities of the membrane and of the elastic walls of the cavity, thus defining a small parameter . Asymptotic expansions of the solution of this scattering problem as →0, that are uniform in the wave number k of the incident wave, are obtained using the method of matched asymptotic expansions. When the frequency of the incident wave is bounded away from the resonant frequencies of the membrane, the cavity fluid, and the elastic body, the resultant wave is a small perturbation (the “outer expansion”) of the specularly reflected wave from a completely rigid plane. However, when the incident wave frequency is near a resonant frequency (the “inner expansion”) then the scattered wave results from the interaction of the acoustic fluid with the membrane, the membrane with the cavity fluid, and finally the cavity fluid with the elastic body, and the resulting scattered field may be “large”. The cavity backed membrane (CBM) was previously analyzed for a rigid cavity wall. In this paper, we study the effects of the elastic cavity walls on modifying the response of the CBM. For incident frequencies near the membrane resonant frequencies, the elasticity of the cavity gives only a higher order (in ) correction to the scattered field. However, near a cavity fluid resonant frequency, and, of course, near an elastic body resonant frequency the elasticity contributes to the scattered field. The method is applied to the two dimensional problem of an infinite strip membrane backed by an infinitely long rectangular cavity. The cavity is formed by two infinitely long rectangular elastic solids. We speculate on the possible significance of the results with respect to viscoelastic membranes and viscoelastic instead of elastic cavity walls for surface sound absorbers.  相似文献   

2.
We investigate the scattering of compressional waves from an infinite, circular-cylindrical obstacle, and the excitation during the scattering process of surface waves that propagate along helical paths over the cylinder surface. For the case of a rigid or soft obstacle, the surface waves are external, and are obtained via the use of a Watson transformation. For the case of a penetrable cylinder, additional internal, resonant surface waves are generated for which the phase and group velocity dispersion curves can be obtained from the Resonance Scattering Theory. We perform a detailed study of certain refraction effects which take place upon the generation of the surface waves by the incident plane wave.  相似文献   

3.
T , the first of two articles, is concerned with the scattering of elastic waves by arbitrary surface-breaking or near surface defects in an isotropic half-plane. We present an analytical solution, by the method of matched asymptotic expansions, when the parameter , which is the ratio of a typical length scale of the imperfection to the incident radiation's wavelength, is small. The problem is formulated for a general class of small defects, including cracks, surface bumps and inclusions, and for arbitrary incident waves. As a straightforward example of the asymptotic scheme we specialize the defect to a two-dimensional circular void or protrusion, which breaks the free surface, and assume Rayleigh wave excitation ; this inner problem is exactly solvable by conformal mapping methods. The displacement field is found uniformly to leading order in , and the Rayleigh waves which are scattered by the crack are explicitly determined. In the second article we use the method given here to tackle the important problem of an inclined edge-crack. In that work we show that the scattered field can be found to any asymptotic order in a straightforward manner, and in particular the Rayleigh wave coefficients are given to O(2).  相似文献   

4.
The responses of a hard or soft target in the presence of a hard or soft half space are computed using space-time integral equations formulated in the time domain. The incident pressure wave is a ‘smoothed impulse“ with a Gaussian-shaped time dependence, whose width is of the order of a target dimension. A space-time integral equation for the pressure field and the gradient pressure field on the outside of the target surface is solved for the pressure and the pressure gradient by stepping on in time. The scattered field is then computed from these source fields. The technique is applicable to targets of arbitrary contour and is demonstrated for a sphere and right-circular cylinder at various locations relative to the half space.  相似文献   

5.
IntroductionIn 1 83 1 ,Faraday[1]reportedhisexperimentalobservationofsurfacewavesindifferentfluidscoveringahorizontalplatesubjectedtoaverticalvibration ,andheobservedthesurfacestandingwavesoffluidsliketheteethofaveryshortcoarsecomb .Heremarksthatthesesurfacewaveshaveafrequencyequaltoonehalfthatoftheexcitation .ThisisthefamousFaradayexperiment.WedesignatethosefluidsurfacewavesformedbyverticallyexcitationandhaveafrequencyequaltoonehalfthatoftheexcitationasFaradaywaves.FollowingthisproblemMatth…  相似文献   

6.
We systematically employ the method of matched asymptotic expansions to model Helmholtz resonators, with thermoviscous effects incorporated starting from first principles and with the lumped parameters characterizing the neck and cavity geometries precisely defined and provided explicitly for a wide range of geometries. With an eye towards modeling acoustic metasurfaces, we consider resonators embedded in a rigid surface, each resonator consisting of an arbitrarily shaped cavity connected to the external half-space by a small cylindrical neck. The bulk of the analysis is devoted to the problem where a single resonator is subjected to a normally incident plane wave; the model is then extended using “Foldy’s method” to the case of multiple resonators subjected to an arbitrary incident field. As an illustration, we derive critical-coupling conditions for optimal and perfect absorption by a single resonator and a model metasurface, respectively.  相似文献   

7.
The attenuation and dispersion of elastic waves in fluid-saturated rocks due to the viscosity of the pore fluid is investigated using an idealized exactly solvable example of a system of alternating solid and viscous fluid layers. Waves in periodic layered systems at low frequencies are studied using an asymptotic analysis of Rytov’s exact dispersion equations. Since the wavelength of shear waves in fluids (viscous skin depth) is much smaller than the wavelength of shear or compressional waves in solids, the presence of viscous fluid layers necessitates the inclusion of higher terms in the long-wavelength asymptotic expansion. This expansion allows for the derivation of explicit analytical expressions for the attenuation and dispersion of shear waves, with the directions of propagation and of particle motion being in the bedding plane. The attenuation (dispersion) is controlled by the parameter which represents the ratio of Biot’s characteristic frequency to the viscoelastic characteristic frequency. If Biot’s characteristic frequency is small compared with the viscoelastic characteristic frequency, the solution is identical to that derived from an anisotropic version of the Frenkel–Biot theory of poroelasticity. In the opposite case when Biot’s characteristic frequency is greater than the viscoelastic characteristic frequency, the attenuation/dispersion is dominated by the classical viscoelastic absorption due to the shear stiffening effect of the viscous fluid layers. The product of these two characteristic frequencies is equal to the squared resonant frequency of the layered system, times a dimensionless proportionality constant of the order 1. This explains why the visco-elastic and poroelastic mechanisms are usually treated separately in the context of macroscopic (effective medium) theories, as these theories imply that frequency is small compared to the resonant (scattering) frequency of individual pores.  相似文献   

8.
《Wave Motion》1987,9(4):289-300
A plane sound wave is incident upon two semi-infinite rigid plates, lying along y = 0, x > 0 and y = -h, x < 0, respectively, where (x, y) are two-dimensional Cartesian coordinates. The problem is formulated into a matrix Wiener-Hopf equation which is uncoupled by the introduction of an infinite sum of poles. The exact solution is then easily obtained in terms of the coefficients of the poles, where these coefficients are shown to satisfy a linear system of algebraic equations. The far-field solution is obtained and an asymptotic approximation to the total potential is determined in the limit as h, the plate spacing, becomes small compared to the wavelength of the incident wave. The algebraic system is solved numerically in this limit and the results are shown to agree with those obtained by the method of matched asymptotic expansions.  相似文献   

9.
I we examine the scattering of Rayleigh waves by an inclined two-dimensional plane surface-breaking crack in an isotropic elastic half-plane. We follow the method already introduced by the authors (A and W , 1992a, J. Mech. Phys. Solids 40, 1683) to obtain an analytical solution when the parameter , which is the ratio of a typical length scale of the imperfection to the incident radiation's wavelength, is small. The procedure employed is the method of matched asymptotic expansions, which involves determining the scattered wave field both away from and near the crack. The outer solution is specialized from the general expansion in the first part of this work (A and W , 1992a, J. Mech. Phys. Solids 40, 1683), and the inner problem is exactly solved by the Wiener-Hopf technique. The displacement field and scattered Rayleigh waves are found uniformly to third order in , and concluding remarks are made about the general method as well as the results presented here.  相似文献   

10.
A linear contact problem of an elastic half space with rigid punches ε-periodically situated on a bounded part of the boundary of the elastic solid is investigated. Using the method of homogenization theory and the method of matched asymptotic expansions, the leading terms of the asymptotic solution are constructed as ε→0. The general capacity of the contact spot is introduced and some its properties are described.  相似文献   

11.
We consider sum rules for the electric type (TM) multipole coefficients in the Mie theory of the scattering coefficients for electromagnetic waves incident upon spherical particles. These sum rules are derived from infinite product representations for the scattering coefficients and involve an analytically-determined multiplying factor in addition to the resonant eigenstate values. The product expansions converge rapidly to the scattering coefficients with increasing numbers of resonant state values only if the analytic multiplying factor is included in expansions, and the use of these sum rules further accelerates the convergence of scattering coefficient expansions. We present analytic asymptotic estimates for the resonant state eigenvalues in the dipole, quadrupole and hexapole cases, give the corresponding sum rules, and numerically illustrate their convergence.  相似文献   

12.
In this paper we consider the scattering of a wave from an infinite line source by an infinitely long cylinder C. The line source is parallel to the axis of C, and the cross section C of this cylinder is smooth, closed and convex. C is formed by joining a pair of smooth convex arcs to a circle C0, one on the illuminated side, and one on the dark side, so that C is circular near the points of diffraction. By a rigorous argument we establish the asymptotic behavior of the field at high frequencies, in a certain portion of the shadow S that is determined by the geometry of C in S. The leading term of our asymptotic expansion is the field predicted by the geometrical theory of diffraction.Previous authors have derived asymptotic expansions in the shadow regions of convex bodies in special cases where separation of variables is possible. Others, who have considered more general shapes, have only been able to obtain bounds on the field in the shadow. In contrast our result is believed to be the first rigorous asymptotic solution in the shadow of a nonseparable boundary, whose shape is frequency independent.The research for this paper was supported by U.S. National Science Foundation Grant No. GP-7985.  相似文献   

13.
We address an important issue of dynamic homogenisation in vector elasticity for a doubly periodic mass-spring elastic lattice. The notion of logarithmically growing resonant waves is used in the analysis of star-shaped wave forms induced by an oscillating point force. We note that the dispersion surfaces for Floquet–Bloch waves in the elastic lattice may contain critical points of the saddle type. Based on the local quadratic approximations of a dispersion surface, where the radian frequency is considered as a function of wave vector components, we deduce properties of a transient asymptotic solution associated with the contribution of the point source to the wave form. The notion of local Green’s functions is used to describe localised wave forms corresponding to the resonant frequency. The special feature of the problem is that, at the same resonant frequency, the Taylor quadratic approximations for different groups of the critical points on the dispersion surfaces (and hence different Floquet–Bloch vectors) are different. Thus, it is shown that for the vector case of micro-structured elastic medium there is no uniformly defined dynamic homogenisation procedure for a given resonant frequency. Instead, the continuous approximation of the wave field can be obtained through the asymptotic analysis of the lattice Green’s functions, presented in this paper.  相似文献   

14.
An expression is obtained for the angular velocity of a spherical dispersed particle in a viscous fluid in an external vortex field with an harmonic time dependence. This expression is then used for investigating a system of two rotating dispersed particles whose rotation is the result of the interaction of the particles in the field of an incident sound wave. It is found that such a system possesses a rather interesting nontrivial property: under certain conditions it has a resonant frequency at which the rotation of the particles relative to the fluid is most intense.Translated from Izvestiya Rossiiskoi Akademii Nauk, Mekhanika Zhidkosti i Gaza, No.4, pp. 186–188, July–August, 1992.  相似文献   

15.
浦俊  卢东强 《力学学报》2019,51(6):1614-1629
解析地研究了在三层流体中斜入射波浪与半无限弹性板的相互作用引起的波散射和板的水弹性响应. 三层流体在界面处的密度发生阶跃, 各层为一常数. 假设流体不可压缩、无黏、流体运动无旋. 在线性势流理论框架下, 使用本征函数展开法和内积式给出波板相互作用的半解析解. 根据色散关系分析, 得到了表面波模态和界面波模态入射时的临界入射角. 随着物理参数的变化, 临界角将随之发生变化. 临界角决定了当由开阔水域向板覆盖水域传播的表面波或界面波的存在性: (1)板覆盖水域入射界面上, 透射波能否存在; (2)入射界面之上界面中, 板覆盖水域中的透射波以及开阔水域中的反射波能否存在. 当下界面波入射时并且入射角足够大时, 开阔水域中的下界面波模态是整个流体域中唯一存在的模态.   相似文献   

16.
17.
Sound scattering by an elastic spherical shell is analysed using linear acoustics and linear structural dynamics. It is suggested to utilize the shell’s structural dynamics to reduce or even eliminate the scattered sound field, thus making it practically acoustically invisible. This can be achieved using a prescribed external pressure distribution acting on the shell’s wall. Exact analytical solutions are found for that external pressure distribution, eliminating the scattered wave when the sphere is in free space or near a free surface and is subject to an incoming planar monochromatic sound wave. The latter is assumed to propagate in a direction perpendicular to the free surface (if it exists). The case of a few pressure-actuators acting on the shell’s wall is also modelled and an optimal solution which reduces the sound scattering by these actuators is found. An aluminium shell of 1 m radius and 5 mm thickness, situated in fresh water is analysed for sound frequencies of up to 10 kHz. The scattered wave fields are presented as well as the external pressure distributions that eliminate these scattered sound field, i.e. achieving acoustic cloaking. Significant reduction in the scattered wave energy and the target strength of more than 10 dB are also realized using a few pressure-actuators as long as the distance between the actuators is no more than three times the incident wave length for the investigated cases.  相似文献   

18.
F.G. Mitri  G.T. Silva 《Wave Motion》2011,48(5):392-400
In this paper, the off-axial acoustic scattering of a high-order Bessel vortex beam by a rigid immovable (fixed) sphere is investigated. It is shown here that shifting the sphere off the axis of wave propagation induces a dependence of the scattering on the azimuthal angle. Theoretical expressions for the incident and scattered field from a rigid immovable sphere are derived. The near- and far-field acoustic scattering fields are expressed using partial wave series involving the spherical harmonics, the scattering coefficients of the sphere, the half-conical angle of the wave number components of the beam, its order and the beam-shape coefficients. The scattering coefficients of the sphere and the 3D scattering directivity plots in the near- and far-field regions are evaluated using a numerical integration procedure. The calculations indicate that the scattering directivity patterns near the sphere and in the far-field are strongly dependent upon the position of the sphere facing the incident high-order Bessel vortex beam.  相似文献   

19.
The derivation of the transfer equation based on analysis of the equations for spectral semi-invariant and not invoking equations for realization of the random wave field is presented. Uniformly valid asymptotic expansions for the third and the fourth spectral semi-invariant are constructed using the multiple scale method and the matched asymptotic expansion method. This approach makes it possible to investigate the boundary layer in a neighbourhood of the resonant surface where intensive growth in time of the third spectral semi-invariant occurs. This boundary layer defines the form of the transfer equations. An analogous boundary layer for the fourth spectral semiinvariant and its influence on the second and the third spectral semi-invariants are also investigated.  相似文献   

20.
We consider the propagation of small disturbances in a paramagnetic conducting fluid in a uniform constant magnetic field. Because of coupling of the mechanical and magnetic effects, coupled magnetoacoustic oscillations of a wave nature develop in a certain (resonant) frequency region. The usual MHD waves and uniform magnetization oscillations occur far from resonance. Dissipative processes are accounted for.The equations of motion for a conducting paramagnetic fluid in which interaction of the hydrodynamic velocity with the magnetization and the magnetic field was taken into account phenomenologically were obtained in [1], One of the consequences of this interaction is the propagation of coupled magnetoelastic waves in the fluid; this phenomenon is examined in the present paper.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号