首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The dehydrogenation of ethylbenzene (EB) to styrene (ST) in the presence of carbon dioxide instead of steam is believed to be an energy-saving and environmentally friendly process. However, the reaction mechanism for this coupling system still remains unclear. Therefore, the role of carbon dioxide was investigated by means of catalytic reactions and temperature-programmed desorption (TPD) of carbon dioxide over a series of Fe and V supported catalysts as well as thermodynamic analysis. The results showed that the ethylbenzene conversion is associated with the conversion of carbon dioxide, and that there exists a synergistic effect between the ethylbenzene dehydrogenation and the reverse water–gas shift. However, the difference in the behaviour of the catalysts between the single reverse water–gas shift and the coupled ethylbenzene dehydrogenation may suggest that the catalysts are different in the reaction mechanisms for the coupled ethylbenzene dehydrogenation. Carbon dioxide can be activated through either basic sites or redox sites on the catalyst. Based on these results, the role of carbon dioxide and reaction mechanisms are proposed.  相似文献   

2.
高灰煤小型流化床混合气催化气化研究   总被引:4,自引:4,他引:0  
在内径28mm流化床中,对阳泉高灰煤在碱性催化剂(固碱和黏胶废碱液)作用下进行了混合气(空气/水蒸气)催化气化研究,两种碱性催化剂的适宜添加量均为6%。不加催化剂,气化温度830℃~900℃与900℃~920℃下,气化反应的表观反应级数n分别约为2/3与1/3;有催化剂(3%固碱)时,表观反应级数有两个明显的温度段,在830℃~860℃,催化气化的表观反应级数n=1;在860℃~920℃,催化气化的表观反应级数为n=1/3。  相似文献   

3.
混合气气氛下纸浆黑液和钙混合催化剂的催化气化特性   总被引:3,自引:2,他引:1  
采用热重法在单一和混合催化剂(即3%钙和5%钠-黑液单-催化剂及一种3%钙和5%钠-黑液混合催化剂),温度750℃~950℃及常压条件下对三种高变质无烟煤(福建龙岩、丰海和尤溪煤)研究了混合气气化过程中对碳转化率、气化反应速率及有害污染含硫气体相对量的催化效应.纸浆黑液和钙混合催化剂具有两者的的协同作用,在混合气气化过程中,3%钙和5%钠-黑液混合催化剂可极大地增加碳转化率和气化反应速率系由于该混合催化剂碱性表面化合物[-COM]、[-CO2M]及可交换的钙酚盐和羧酸钙[(-COO)2Ca]的存在加速了反应C 2CO2=2CO和C H2O→CO H2的结果,且这一催化作用比水蒸气气化过程更强烈.通过添加碳酸钙于纸浆黑液催化剂的气化方法,除去促进催化剂功效和增加碳转化率以外,也可达到有效的脱硫作用,但是这一较好的操作温度需低于900℃.  相似文献   

4.
采用共沉淀-浸渍法制备了不同Ni 含量的 Ni/Mg(Al)O 催化剂并用于液化石油气(LPG)的低温水蒸气重整反应. X 射线衍射和程序升温还原结果表明, 在 800 ℃焙烧的 Ni/Mg(Al)O 催化剂中, NiO 与 MgO 反应生成 Mg-Ni-O 固溶体, 还原后形成金属 Ni 纳米颗粒. 详细研究了 Ni 含量(质量分数)、反应温度和水/碳摩尔比(nH2O/nC) 等对催化剂性能的影响. 实验结果表明, 15%Ni/Mg(Al)O 催化剂对 LPG 低温重整反应具有最佳的催化性能. 提高反应温度能显著提高 Ni/Mg(Al)O 催化剂的催化性能. 当nH2O/nC=2时, 在400~500 ℃的温度范围使LPG完全转化的最大反应空速从 28900 mL·h-1·g-1Cat提高到 86800 mL·h-1·g-1Cat. 适当增大水/碳摩尔比有利于 LPG 转化为小分子气体, 但在 LPG 摩尔流量不变的情况下, 反应气中水含量过高会导致 LPG 转化率降低. 反应后催化剂的X射线衍射谱(XRD)和热重分析(TG)结果表明, Ni/Mg(Al)O催化剂优良的催化活性和反应稳定性可归因于催化剂表面Ni晶粒较高的稳定性和抗积炭性能.  相似文献   

5.
A series of Ni/SBA-15 catalysts with Ni contents ranging from 5 wt% to 15 wt%, as well as another series of 10%Ni/MgO/SBA-15 catalysts, in which the range of the MgO content was from 1 wt% to 7 wt%, were prepared, and their catalytic performances for the reaction of combined steam and carbon dioxide reforming of methane were investigated in a continuous flow microreactor. The structures of the catalysts were characterized using the XRD, H2-TPR and CO2-TPD techniques. The results indicated that the CO selectivity for this reaction was very close to 100%, and the H2/CO ratio of the product gas could be controlled by changing the H2O/CO2 molar ratio of the feed gas. The simultaneous and plentiful existing of steam and CO2 had a significant influence on the catalytic performance of the 10%Ni/SBA-15 catalyst without modification. After reacting at 850 °C for 120 h over this catalyst, the CH4 conversion dropped from 98% to 85%, and the CO2 conversion decreased from 86% to 53%. However, the 10%Ni/3%MgO/SBA-15 catalyst exhibited a much better catalytic performance, and after reacting for 620 h, the CO2 conversion over this catalyst dropped from 92% to around 77%, while the CH4 conversion was not decreased. Oxidation of the Ni0 species as well as carbon deposition during the reaction were the main reasons for the deactivation of the catalyst without modification. On the other hand, modification by the MgO promoter improved the dispersion of the Ni0 species, and enhanced the CO2 adsorption affinity which in turn depressed the occurring of carbon deposition, and thus retarded the deactivation process.  相似文献   

6.
The effect of alkali metal (Cs, Na) admixtures on the catalytic and physicochemical properties of coprecipitated Cu–Zn–Al catalysts for the low-temperature water–gas shift reaction has been investigated. The inhibition of the formation of methanol, an undesired by-product, by alkali metals is accompanied by a decrease in the activity of the catalyst in the main, water–gas shift reaction ion. The alkali metals exert an adverse effect on the thermal stability of the catalyst. Experimental data are explained in a consistent way on the basis of the following conceptions of the mechanism of the action of alkali metals: (1) the alkali metals stimulate sintering of the crystal structure of the main components of the catalyst, diminishing the activity of the catalyst in the water–gas shift reaction and in methanol formation; (2) the alkali metals directly or indirectly accelerate methanol conversion into other chemical products.  相似文献   

7.
生物质热裂解气中模型化合物萘的催化转化研究   总被引:3,自引:0,他引:3  
在常压连续流动固定床反应器上, 以Ni-Pt/Al2O3为催化剂, 研究了水蒸气含量及反应温度对萘的催化转化反应性能的影响。实验发现,反应温度的升高不仅可以提高萘的转化率和CO、H2的产率, 而且可以改善CO的选择性, 但H2的选择性和积碳量降低;随着水蒸气含量的升高,萘的转化率、H2的产率以及H2的选择性均得到提高,但CO的产率和选择性、积碳量有所下降。此外, 随水蒸气含量的升高副产物苯的浓度增大,在反应温度为700 ℃左右时苯的浓度出现极大值。  相似文献   

8.
甲醇POSR制氢的反应网络热力学分析和有效因子的估算   总被引:1,自引:3,他引:1  
在Cu/ZnO/Al2O3催化剂上对甲醇部分氧化蒸汽重整制备氢气反应的动力学过程进行了研究。在常压和473 K~1 073 K温度范围内对该反应网络中的甲醇部分氧化、甲醇蒸汽重整、甲醇分解和水煤气反应的化学平衡进行了分析。在对这些反应的催化剂Cu/ZnO/Al2O3动力学研究的基础上,根据有效因子的基本概念,考虑催化剂颗粒内的扩散限制,对每个反应沿反应器床层的有效因子进行了估算。  相似文献   

9.
在实验室小型流化床反应器中研究了福建龙岩无烟粉煤纸浆黑液富氧催化气化的特性,考察了纸浆黑液催化剂添加量不同时氧体积分数变化对碳转化率、产气率、煤气组成与热值的影响。结果表明,纸浆黑液催化和富氧气体燃烧的双重作用明显地提高了煤的碳转化率和煤气有效组成;纸浆黑液中钠碱对煤焦气化的催化与对煤灰分中SiO2和Al2O3等氧化物的熔制反应同时发生并存在着竞争;纸浆黑液中钠碱对高温碳与气化剂之间多种反应表现出不同程度的促进。龙岩无烟粉煤在纸浆黑液富氧催化气化时适宜操作条件是氧的体积分数40%和蒸汽/富氧比为1.4kg/m3~2.0kg/m3。碳转化率94%、煤产气率为3.62m3/kg、煤气热值为7.33mJ/m3。  相似文献   

10.
在固定床反应器上,以甲苯为生物质气化焦油的模型化合物,对橄榄石以及其负载镍催化剂对甲苯裂解反应和甲苯/水蒸气重整反应的催化性能进行了研究,并对催化剂进行了SEM、BET、XRD、H2-TPR等表征。结果表明,煅烧使原矿的物化特性发生改变,橄榄石对甲苯裂解反应和重整反应有一定的催化活性。而Ni的引入,使催化剂对甲苯裂解反应的活性有所降低,甲苯的转化率降低2.2%~9.8%;但催化剂对甲苯/水蒸气重整反应的活性升高,甲苯的转化率可高达97.0%,并且载镍橄榄石催化剂对甲苯/水蒸气重整反应有较强的稳定性。  相似文献   

11.
The Ni/CeO2 -ZrO2 -Al2O3 catalyst was prepared with the hydrothermal method. The catalytic performance for the CO2 reforming of CH4 reaction with or without small amount of steam was tested and the amount of coke deposition was measured. The XAFS of Ni K-edge was attained. The results show that the formation of CeAlO3 occurs in reaction,but the coke deposition is responsible for the deactivation of the catalyst. The addition of steam into feed gas can decrease the amount of coke deposition,and promote the stability. Due to the carbon atom penetration into the Ni lattice,for the catalyst sample after reaction without the addition of steam into feed gas,the coordination number of the first Ni-Ni shell decreases sharply. For the catalyst sample after reaction with the addition of steam in feed gas,the coordination numbers of the first Ni-Ni shell decrease slightly. It is due to the addition of steam into feed gas,which can suppress the coke formation and maintain the metallic structure of active Ni metal.  相似文献   

12.
Catalytic steam reforming of acetic acid and hydroxyacetone (acetol) as model compounds of the aqueous fraction of bio-oil (biomass derived pyrolysis liquids) was studied in fluidized bed reactor over Ni/Al catalysts modified with calcium or magnesium. Attrition tests showed that the use of small quantities of these promoters improved the mechanical strength of the reforming catalyst. An optimum Ca/Al molar ratio of 0.12 and a Mg/Al molar ratio of 0.26 leaded to attrition rates of 0.22 and 0.27 wt%/h, respectively. Steam reforming experiments were performed at 650 °C and a steam to carbon molar ratio (S/C) of 5.58. The promoted catalysts showed different acetic acid steam reforming activities depending on the Ca/Al or Mg/Al molar ratios. Magnesium modified catalysts with a Mg/Al molar ratios of 0.26 and 0.50 showed good performances with almost no activity loss with time in contrast to the calcium modified catalysts that showed higher CO and CH4 yields. The addition of calcium generated a NiO phase with less interaction with the support. The highest H2 yield and carbon conversion in acetic steam reforming were obtained by a magnesium promoted catalyst with a Mg/Al ratio of 0.26, while the nonpromoted Ni/Al catalyst showed the best performance in acetol steam reforming. Then, the nature of the organic compound influenced the performance of the different catalysts.  相似文献   

13.
The mechanism of biomass gasification in the presence of alkali catalysts was investigated using two reactor systems. Tests at both high pressure and low temperature as well as low pressure and high temperature confirmed that an increase in gas production from whole biomass and biomass components is achieved in the presence of alkali. Supporting investigations elucidated the chemical pathways affected by the alkali and the alkali's effect on several physical parameters. The char-steam reaction was judged not to be diffusion limited in our high-temperature system. In addition, alkali-induced swelling of biomass was determined to be unrelated to the catalytic effect.  相似文献   

14.
碱金属钾对Ni基催化剂纤维素水蒸气气化活性的影响   总被引:2,自引:0,他引:2  
采用两段式催化气化方式研究了生物质热解气化过程中碱金属的挥发对Ni基催化剂活性的影响。实验结果表明,负载K盐的纤维素水蒸气催化气化过程中,K挥发后会在催化剂表面沉积,而少量K的存在和表面沉积不但能够提高镍基催化剂的抗积炭能力,而且有助于提高其催化活性,产生更多的氢气。然而纤维素中K的浓度过大,将会抑制Ni基催化剂的效果;K在催化剂上的沉积随催化剂循环次数的增加而增加,K的含量愈高,对催化剂的抑制效果愈明显,从而缩短了催化剂的使用寿命。  相似文献   

15.
氢气作为一种高热值的清洁能源广泛地应用于工业中. 研究证明: 生物质通过化学过程可以转化为多种气体燃料(氢气), 液体燃料以及高附加值的化学品. 生物质作为一种环境友好型再生洁净能源, 其研究越来越受到关注. 本文旨在探讨利用生物油为原料, 通过水蒸汽重整方法制备富氢合成气的过程. 利用均匀浸渍的方法制备了一种高分散的碳纳米纤维促进的镍(Ni/CNFs)催化剂, 并将普通的Al2O3作为载体的Ni/Al2O3催化剂和Ni/CNFs作对比. 研究了重整温度以及水蒸汽和碳摩尔比(nS/nC)对生物油水蒸汽重整制氢的影响. 结果表明: 碳纳米纤维作为载体用于生物油水蒸汽重整制氢的效果要远优于普通的Al2O3载体, 利用22% Ni/CNFs 催化剂时, 在实验温度范围内(350-550℃), 最高生物油转化率和氢气产率分别达到了94.7%和92.1%, 通过研究重整条件以及对催化剂进行表征探讨了生物油在水蒸汽重整过程中催化剂的构效关系.  相似文献   

16.
《Comptes Rendus Chimie》2015,18(10):1036-1048
This paper summarizes the results of a research on the influence of the poisoning of the SCR catalyst on its structure. Samples of commercially available SCR catalysts were exposed to real flue gases inside a pulverized coal boiler co-firing coal and biomass. The catalysts were investigated by SEM-EDS, XRD, AAS, UV–vis and 1-butene isomerization as a test reaction. Additionally, ash collected from the catalysts was characterized. The obtained results showed a decrease in the activity by ash and alkali metals originating from biomass. Neither the structural changes in the support nor the changes in the oxidation state and distribution of vanadium were observed during the entire testing period. The acidity of the catalyst, operated for the shortest period (2270 h), increased due to the formation of sulfate species arising from the presence of SO2 in the flue gases. The role of sulfate species and alkali cations in poisoning of catalytic sites is discussed.  相似文献   

17.
Milliseconds process to produce hydrogen by steam methane reforming (SMR) reaction, based on Ni catalyst rather than noble catalyst such as Pd, Rh or Ru, in micro-channel reactors has been paid more and more attentions in recent years. This work aimed to further improve the catalytic performance of nickel-based catalyst by the introduction of additives, i.e., MgO and FeO, prepared by impregnation method on the micro-channels made of metal-ceramic complex substrate. The prepared catalysts were tested in the same micro-channel reactor by switching the catalyst plates. The results showed that among the tested catalysts Ni-Mg catalyst had the highest activity, especially under harsh conditions, i.e., at high space velocity and/or low reaction temperature. Moreover, the catalyst activity and selectivity were stable during the 12 h on stream test even when the ratio of steam to carbon (SIC) was as low as 1.0. The addition of MgO promoted the active Ni species to have a good dispersion on the substrate, leading to a better catalytic performance for SMR reaction.  相似文献   

18.
采用浸渍法制备了Ni基整体式催化剂,考察了不同条件(温度、时间、空速、水蒸气添加等)对催化剂上生物质粗燃气重整反应性能的影响。结果表明,催化剂在较低温度下(≤500 ℃)只具有CO加氢反应活性,随着反应温度的升高粗燃气重整反应逐渐进行,在800 ℃以上,CH4和C2转化率均高达95 %以上,CO2转化率达到92%,但随着反应空速和水蒸气添加量的增加,CH4和CO2等转化率呈现缓慢降低的趋势。此外,通过改变水蒸气添加量可对合成气中H2/CO体积比在0.85~4.00进行较好调节。结合XRD表征发现,Ni基整体式催化剂中Ni°的生成可较好地促进重整反应的进行。  相似文献   

19.
由铜基催化剂催化甲醇水蒸汽重整制氢是有效解决车载燃料电池等制氢需求的潜在途径.但传统铜基催化剂对该反应的低温催化活性及制氢选择性均不理想.近年来碳纳米管及活性碳纤维等因具有独特的纳米孔结构、高比表面积和优异的吸附性能作为潜在的新型催化材料而备受关注.  相似文献   

20.
ZrO2在Cu-ZnO-ZrO2甲醇水蒸汽重整制氢催化剂中的作用   总被引:2,自引:0,他引:2  
通过对一系列Cu-ZnO-ZrO2甲醇水蒸汽重整(SRM)催化剂的XRD、TEM和BET表征及催化性能测定,研究催化剂中ZrO2对催化剂粒径、比表面以及对SRM反应性能的影响.结果表明,ZrO2的加入,使催化剂的粒径从15 nm降至10 nm(其中CuO和ZnO的平均粒径分别从7.7和10.4 nm降至3.9和8.7 nm),BET比表面从60 m2•g-1增至78 m2•g-1.随着催化剂含ZrO2量不同,甲醇的转化率和H2、CO2的选择性均产生变化,当催化剂中Zr含量为24.0%(w),反应温度为220 ℃,水、醇摩尔比为1.3时,甲醇的转化率达到51.6%, H2和CO2的选择性达到100%(CO和CH4在产物气体中的体积分数小于10-4),这一结果对甲醇燃料电池甲醇重整器的应用具有重要的意义.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号