首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
New metal based triazoles (1–12) have been synthesized by the interaction of novel Schiff base ligands (L1–L3) with the Co(II), Ni(II), Cu(II) and Zn(II) metal ions. The Schiff base ligands and their all metal(II) complexes have been thoroughly characterized using various physical, analytical and spectroscopic techniques. In vitro bacterial and fungal inhibition studies were carried out to examine the antibacterial and antifungal profile of the Schiff bases in comparison to their metal(II) complexes against two Gram‐positive, four Gram‐negative and six fungal strains. The bioactivity data showed the metal(II) complexes to have more potent antibacterial and antifungal activity than their uncomplexed parent Schiff bases against one or more bacterial and fungal species. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

2.
A new series of mercaptopyrimidine Ru(III) complexes were synthesized and characterized using various spectral techniques like single‐crystal X‐ray diffraction, Fourier transform infrared and NMR spectroscopies, thermogravimetric analysis and energy‐dispersive X‐ray analysis. The complexes were evaluated for their pharmacological activities like in vitro antimicrobial, anticancer, antituberculosis and antioxidant activities. The DNA binding of the complexes was investigated by absorption and emission spectral measurements which indicated that the complexes bind to DNA via intercalation, with molecular docking studies validating the results. DNA cleavage studies of the complexes were carried out.  相似文献   

3.
Reactions of fresh M(OH)2 (M = Zn2+, Cd2+) precipitate and (RS)-2-methylglutaric acid (H2MGL), 2,2′-bipyridine (bipy), or 1,10-phenanthroline (phen) in aqueous solution at 50°C afforded four new metal–organic complexes [Zn2(bipy)2(H2O)2(MGL)2] (1), [Zn2(phen)2(H2O)(MGL)2] (2), [Cd(bipy)(H2O)(MGL)] · 3H2O (3), and [Cd(phen)(H2O)(MGL)] · 2H2O (4), which were characterized by single crystal X-ray diffraction, IR spectra, TG/DTA analysis as well as fluorescence spectra. In 1, the [Zn(bipy)(H2O)]2+ moieties are linked by R- and S-2-methylglutarate anions to build up the centrosymmetric dinuclear [Zn2(bipy)2(H2O)2(MGL)2] molecules. In 2, the 1-D ribbon-like chains [Zn2(phen)2(H2O)(MGL)2] n can be visualized as from centrosymmetric dinuclear [Zn2(phen)2(H2O)2(MGL)2] units sharing common aqua ligands. Both 3 and 4 exhibit 1-D chains resulting from [Cd(bipy)(H2O)]2+ and [Cd(phen)(H2O)]2+, respectively, bridged alternately by R- and S-2-methylglutarate anions in bis-chelating fashion. The intermolecular and interchain π···π stacking interactions form supramolecular assemblies in 1 and 1-D chains in 24 into 2-D layers. The hydrogen bonded lattice H2O molecules are sandwiched between 2-D layers in 3 and 4. Fluorescence spectra of 14 exhibit LLCT π → π* transitions.  相似文献   

4.
Three copper(II) complexes derived from bulky ortho-hydroxy Schiff base ligands, (1)-(3), were synthesized and characterized by chemical analysis, UV-Vis, IR, μeff and mass spectrometry. The solid state structures of compounds (1)-(3) were determined. The solid state X-ray diffraction studies of these compounds show that the geometry is intermediate between square planar and tetrahedral. Moreover, EPR studies in DMF solution at 77 K suggest that the geometry of these complexes in solution is different from that observed in the solid state by X-ray crystallography. Furthermore, cyclic voltammetry studies performed for (1)-(3), indicate a dependence of the cathodic potentials upon conformational and electronic effects.  相似文献   

5.
By condensation of amantadine and 4-methoxysalicylaldehyde a new Schiff base HL was synthesized. A mixture of HL and zinc(II) chloride in an alcoholic medium leads to [Zn(HL)2Cl2] (1). However, the same reactants gave another different complex (ZnL2) (2) in the presence of NaOH. The two complexes were characterized by IR, 1H NMR, elemental analysis, molar conductance, and single-crystal X-ray diffraction. X-ray diffraction analysis reveals that complex 1 crystallizes in the triclinic system, Pī space group; each asymmetric unit consists of one zinc(II), two HL, and two chlorides. The tetra coordination of central zinc is attained by two chlorides and two oxygens from the Schiff base, forming a distorted tetrahedral geometry. Complex 2 crystallizes in the monoclinic system, P21/c space group; each asymmetric unit consists of one zinc(II) and two L. The tetra coordination of central zinc is attained by two nitrogens and two oxygens from the Schiff base, forming a distorted tetrahedral geometry.  相似文献   

6.
Transition metal complexes of type M(L)2(H2O)x were synthesized, where L is deprotonated Schiff base 2,4‐dihalo‐6‐(substituted thiazol‐2‐ylimino)methylphenol derived from the condensation of aminothiazole or its derivatives with 2‐hydroxy‐3‐halobenzaldehyde and M = Co2+, Ni2+, Cu2+ and Zn2+ (x = 0 for Cu2+ and Zn2+; x = 2 for Co2+ and Ni2+). The synthesized Schiff bases and their metal complexes were thoroughly characterized using infrared, 1H NMR, electronic and electron paramagnetic resonance spectroscopies, elemental analysis, molar conductance and magnetic susceptibility measurements, thermogravimetric analysis and scanning electron microscopy. The results reveal that the bidentate ligands form complexes having octahedral geometry around Co2+ and Ni2+ metal ions while the geometry around Cu2+ and Zn2+ metal ions is four‐coordinated. The geometries of newly synthesized Schiff bases and their metal complexes were fully optimized in Gaussian 09 using 6–31 + g(d,p) basis set. Fluorescence quenching data reveal that Zn(II) and Cu(II) complexes bind more strongly to bovine serum albumin in comparison to Co(II) and Ni(II) complexes. The ligands and their complexes were evaluated for in vitro antibacterial activity against Escherichia coli ATCC 25922 (Gram negative) and Staphylococcus aureus ATCC 29213 (Gram positive) and cytotoxicity against lever hepatocellular cell line HepG2.  相似文献   

7.
Schiff base mixed-ligand copper complexes [CuL1(phen)Cl2], [CuL1(bipy)Cl2], [Cu(L1)2Cl2], [Cu(L2)2Cl2], [CuL2(bipy)Cl2], and [CuL2(phen)Cl2] (where L1?=?4-[3,4-dimethoxy-benzylidene]-1,5-dimethyl-2-phenyl-1,2-dihydro-pyrazole-3-one; L2?=?4-[3-hydroxy-4-nitro-benzylidene]-1,5-dimethyl-2-phenyl-1,2-dihydro-pyrazole-3-one; phen?=?1,10-phenanthroline; and bipy?=?2,2′-bipyridine) have been synthesized and characterized. Their DNA-binding properties have been studied by electronic absorption spectra, viscosity, and electrochemical measurements. The absorption spectral and viscosity results suggest that the copper(II) complexes bind to DNA via partial intercalation. The addition of DNA resulting in the decrease of the peak current of the copper(II) complexes indicates their interaction. Interaction between the complexes and DNA has also been investigated by submarine gel electrophoresis. The copper complexes cleave supercoiled pUC19 DNA to nicked and linear forms through hydroxyl radical and singlet oxygen in the presence of 3-mercaptopropionic acid as the reducing agent. These copper complexes promote the photocleavage of pUC19 DNA under irradiation at 360?nm. Mechanistic study reveals that singlet oxygen is likely to be the reactive species responsible for the cleavage of plasmid DNA by the synthesized complexes. The in vitro antimicrobial study indicates that the metal chelates have higher activity against the bacterial and fungal strains than the free ligands.  相似文献   

8.
Two new Cd(II) complexes, having one binuclear structure [Cd2(L)2(Cl)2] (1) and another azido bridged one-dimensional zig-zag polynuclear network [Cd31,1-N3)4(L)2{H2N(CH2)2N(C2H5)2} · H2O]n (2) have been synthesized from a tridentate N2O donor Schiff base ligand LH, [LH = (OCH3)(OH)C6H3CHN(CH2)2N(C2H5)2], which is the condensation product of 2-hydroxy-4-methoxybenzaldehyde and 2-diethylaminoethylamine. Both the complexes 1 and 2 have been characterized by elemental analyses, IR & 1H NMR spectroscopy, TGA and fluorescence studies. Finally their structures have been established by single crystal X-ray diffraction method. Structural study reveals that in the complex 1, two Cd(II) centers are held together by two μ2-phenolato oxygen atoms and the terminal chlorine atom occupies the apical site of the square pyramidal environment of each metal center. In case of complex 2, the trinuclear asymmetric unit contains octahedral Cd(II) centers which are further held together by doubly end-on azido bridging to form a zig-zag polynuclear structure. It also displays intraligand 1(π–π) fluorescence and can potentially serve as photoactive material.  相似文献   

9.
A series of novel heteronuclear Ln(III)-CU(II) complexes with noncyclic polyether-amino acid Schiff base were synthesized. The general formula is (LnCu2(H2TALY) (NO3)5] (NO3)2·nH2O (Ln= La, Nd, Sm, Gd,n = 4; Ln = Yb, Y,n = 3), where H2TALY = tetraglycol aldehyde bis-lysine Schiff base. It is the first time to report the synthetic method for this new Cu(II) complexes and Ln(III)-Cu(II) heteronuclear complexes. The complexes were characterized by elemental analysis, IR spectra. TG-DTA, magnetic susceptibility, and especially by a 500 MHz NMR spectrometer for 2D-COSY NMR. Coordination mechanism and structures of complexes have been suggested as well. Of particular interest is the potential that the novel complexes obtained may be used as a catalyst. which prompted us to investigate them. It shows 100% conversion with the viscosity-average molecular weight 120 000 for the polymerization of methyl methacrylate (MMA) without addition of any cocatalyst. Furthermore, the complexes with such aliphatic Schiff bases can be used as a good catalyst, which has been confirmed and discussed here. They may be a new kind of catalyst system with the above speciality. Project supported by the National Natural Science Foundation of China (Grant No. 29671026) and Natural Science Foundation of Zhejiang Province (Grant No. 296062) and the Laboratory of MRAMP (Grant No. 971502).  相似文献   

10.
The new Schiff base ligand 2,2′-{(4-chloro-1,2-phenylene)bis(nitrilo(E)methylylidene)}bis(4-bromophenol) (H2L) and its VO(II), Zn(II) and ZrO(II) metal chelates have been synthesized and characterized by spectral, powder x-ray diffraction (PXRD), molar conductance, magnetic measurements, thermal and elemental analyses. The molecular geometry of the prepared compounds has been confirmed by applying the theoretical density functional theory calculations (DFT). The analytical data showed that the parent azomethine H2L ligand binds to the VO(II), Zn(II) and ZrO(II) ions through both of the two azomethine-N and two phenolic-O groups and adopts distorted octahedral geometry for ZnL(H2O)2 chelate while square pyramidal geometries for VOL and ZrOL chelates. The antioxidant activity of the compounds was also evaluated by using 1,1‐diphenyl‐2‐picrylhydrazyl (DDPH) reduction method and compared with the positive control ascorbic acid. Carcinoma cells such as breast (MCF-7), liver (Hep-G2), colon (HCT-116) carcinoma cell lines and human embryonic kidney 293 cells (HEK-293) were used for in vitro cell proliferation to investigate the anticancer potency of the prepared compounds. The results showed that, the tumor growth is inhibited and dose-dependent according to the following order: VOL > ZrOL > ZnL(H2O)2 > H2L. The titled compounds have been also tested for their antimicrobial activity against certain pathogenic bacteria and fungi. The results showed that the H2L ligand and its complexes has enhanced antibacterial and antifungal activities. The CT-DNA binding experiments of azomethine chelates showed that, the binding modes are intercalative, and the determined intrinsic binding constants (Kb) for the VOL, ZrOL, ZnL(H2O)2 complexes, are in the range 6.1–7.8 × 105 mol?1 dm?3.The docking calculations were performed to probe the nature of binding affinity of the synthesized compounds with human DNA (PDB:1bna). The compounds may be applicable orally in an accurate manner, according to their in-silico intake, delivery, metabolic processes, digestion, and toxic effects (ADME) data.  相似文献   

11.
Two new potentially octadentate N2O6 Schiff-base ligands 2-((E)-(2-(2-(2-((E)-2-hydroxy-3-methoxybenzylideneamino)phenoxy)phenoxy)phenylimino)methyl)-6-methoxyphenol H2L1 and 2-((E)-(2-(2-(2-((E)-2-hydroxy-3-methoxybenzylideneamino)phenoxy)-4-tert-butylphenoxy)phenylimino)methyl)-6-methoxyphenol H2L2 were prepared from the reaction of O-Vaniline with 1,2-bis(2′-aminophenoxy)benzene or 1,2-bis(2′-aminophenoxy)-4-t-butylbenzene, respectively. Reactions of H2L1 and H2L2 with copper(II) and zinc(II) salts in methanol in the presence of N(Et)3 gave neutral [CuL1]?·?0.5CH2Cl2, [CuL2], [ZnL1]?·?0.5CH2Cl2, and [ZnL2] complexes. The complexes were characterized by IR spectra, elemental analysis, magnetic susceptibility, ESI–MS spectra, molar conductance (Λm), UV-Vis spectra and, in the case of [ZnL1]?·?0.5CH2Cl2 and [ZnL2], with 1H- and 13C-NMR. The crystal structure of [ZnL1]?·?0.5CH2Cl2 has also been determined showing the metal ion in a highly distorted trigonal bipyramidal geometry. The electrochemical behavior of H2L2 and its Cu(II) complex, [CuL2], was studied and the formation constant of [CuL2] was evaluated using cyclic voltammetry. The logarithm value of formation constant of [CuL2] is 21.9.  相似文献   

12.
Two mononuclear Cu(II) complexes, [Cu(L1H2)](ClO4)1.25Cl0.75·1.25H2O (1) and [Cu(L2H2)](ClO4)2 (2), of the pyridoxal Schiff base ligands N,N′-dipyridoxylethylenediimine (L1H2) and N,N′-dipyridoxyl-1,3-propanediimine (L2H2) are reported. X-ray crystal structures of both complexes are also reported. In both complexes the pyridoxal nitrogen atoms remain protonated. In the solid state, the tetradentate Schiff base ligand is virtually planar in 1, while in 2 the ligand conformation is like an inverted umbrella. In cyclic voltammetry experiments it is found that in these complexes the Cu(III) and Cu(I) states are more easily accessible than in their salen type analogs. The pyridoxal Schiff base complexes are also found to be resistant to oxidative electro-polymerization, unlike their corresponding salicyl aldehyde Schiff base complexes.  相似文献   

13.
Abstract

A series of new cobalt(II) complexes of Schiff base derived from salicylaldehyde and different cycloalkylamines (cycloalkyl?=?cyclopentyl-1a, cyclohexyl-1b, and cycloheptyl-1c) was synthesized: [Co(CyPen-Salicyl)2] (2a), [Co(CyHex-Salicyl)2] (2b), and [Co(CyHep-Salicyl)2] (2c). The bis(phenoxyiminato)Co(II) complexes (2a-2c) have been fully characterized by FTIR and UV–vis spectroscopy, elemental analysis, cyclic voltammetry, computational methods, and two of the complexes were further studied by single crystal X-ray crystallography. The X-ray structure analysis of 2a-b shows that the geometry around the metal atom is a distorted tetrahedron, confirming the spectroscopic data. Electrochemical studies suggest that the redox potential of 2a-2c are sensitive to the substituent group, decreasing in order cyclopentyl?>?cyclohexyl?>?cycloheptyl. Complexes 2a-2c were used as controlling agents for the polymerization of vinyl acetate (VAc) initiated by AIBN, according to a cobalt-mediated radical polymerization (CMRP) mechanism. The VAc polymerization mediated by 2a-2c suggests that the level of control can be slightly tuned by the substitution of the cycloalkyl group on the Schiff base ligand. Complex 2b showed the smaller discrepancy between observed and calculated molecular weight, and narrower molecular weight distribution.  相似文献   

14.
The nitrosation of monophenylamido substituted quadridentate Schiff base complexes of copper(II) are observed to adopt N-bonded isonitroso coordination whereas the phenylisocyanation of the corresponding mononitrosated quadridentate complexes are found to prefer O-bonded isonitroso coordination.  相似文献   

15.
Five new Ni(II) Schiff base complexes [NiLx(Solv)2] denoted by NiLx, x = 1–5, were synthesized and characterized. The Schiff base ligands were synthesized from the condensation of 5-bromo-2-hydroxy-3-nitrobenzaldehyde with different aliphatic and aromatic diamines. The X-ray crystal structure of NiL3 was determined. The ligands and complexes were tested as antibacterial agents against two gram(+) and two gram(?) human pathogenic bacteria. The complexes showed moderate antibacterial activity against both gram type bacteria. The new Ni(II) complexes showed enhanced antibacterial activity compared to the previously reported Cu(II) complexes of the same ligands.  相似文献   

16.
Metal complexes of two general formulae [M(L)(Cl)(H2O)2] [M = Mn(II), Co(II), Ni(II) and Cu(II)] and [M(L)(H2O)] [M = Zn(II) and Cd(II)] with pyrazine-2-carbohydrazone of 2-hydroxy-5-methylacetophenone (H2L) are synthesized and characterized by microanalytical, thermal, magnetic susceptibility measurement, spectroscopic (IR, 1H NMR, 13C NMR), mass, molar conductance, X-ray powder diffraction, ESR and SEM studies. While the molar conductance measurements in DMSO indicated their non-electrolytic nature, the spectroscopic studies confirmed a tridentate ONO donor behaviour of the ligand towards the central metal ion. Based on the physico-chemical studies monomeric octahedral geometry around Mn(II), Co(II), Ni(II) and Cu(II) ions (i.e. for the first series of complexes) whereas tetrahedral to Zn(II) and Cd(II) ions (i.e. for the second series of complexes) are suggested. Based on the thermal behavior of the complexes, various kinetic and thermodynamic parameters were evaluated using Coats-Redfern method. The ligand and its metal complexes were screened for in vitro antibacterial and antifungal activity against Gram +ve S. aureus, B. subtilis and Gram –ve E. coli and S. typhi. and fungal strains, C. albicans and A. niger. The observed data infer promising biological activity of some of these complexes compared the parent ligand against all bacterial and fungal species.  相似文献   

17.
Three new dinuclear Zn(II) complexes [Zn(L)(μ1,1-N3)Zn(L)(N3)] · 1.5H2O (1), [Zn(L)(μ1,1-NCO)Zn(L)(NCO)] · 1.5H2O (2) and [Zn(L)(μ1,1-NCS)Zn(L)(NCS)(OH2)] (3) have been synthesized from a potentially tetradentate N2O2-donor Schiff base ligand LH, [LH = (OCH3)(OH)C6H3CHN(CH2)2N(CH3)2], which is the condensation product of o-vanillin and 2-dimethylaminoethylamine. All the three complexes 1, 2 and 3 have been characterized by elemental analysis, IR and 1H NMR spectroscopy, TGA and fluorescence studies. Finally, their structures have been established by the single crystal X-ray diffraction method. Structural studies reveal that in complexes 1, 2 and 3 the two Zn(II) centers are held together by a μ2-phenolato oxygen atom and also by an end-on pseudohalide nitrogen (azide for 1; cyanate for 2; thiocyanate for 3) atom. Among the two deprotonated Schiff base ligands present in each complex, one acts as a tetradentate ligand (N2O2 donor set) while the other acts as a tridentate ligand (N2O donor set), having a non-coordinated methoxy group. All the synthesized complexes display intraligand 1(π–π) fluorescence and can potentially serve as photoactive materials.  相似文献   

18.
Cu(II) complexes of three bis(pyrrol-2-yl-methyleneamine) ligands were synthesized and characterized by elemental analyses, mass spectra, and IR spectra. X-ray diffraction analysis shows that [CuL3]2 is a dinuclear complex with an extremely distorted square-planar geometry. Furthermore, the antioxidant activities of the compounds have been investigated. The electrochemical properties of the Cu(II) complexes have also been studied by cyclic voltammetry. The Cu(II) complexes show similar superoxide dismutase (SOD) activity compared with that of the native Cu, Zn-SOD.  相似文献   

19.
Three novel Schiff base Cd(II) trimeric complexes, [Cd3(L1)2(SCN)2(CF3COO)2] (1), [Cd3(L1)2(SCN)2(HCONMe2)] (2) and [Cd3(L2)2{N(CN)2}2] (3) have been prepared from two different symmetrical Schiff bases H2L1 and H2L2 (where H2L1 = N1,N3-bis(salicylideneimino)diethylenetriamine, a potentially pentadentate Schiff base with a N3O2 donor set, and H2L2 = N1,N3-bis(3-methoxysalicylideneimino)diethylenetriamine, a potentially heptadentate Schiff base with a N3O4 donor set). All the complexes have been synthesised under similar synthetic procedures and their crystal structures have been established by single crystal X-ray diffraction methods. The ligands and their metal complexes have been characterised by analytical and spectroscopic techniques. Among the three complexes, 1 and 3 are linear whereas 2 is a cyclic trimer. In 1 and 3, all the doubly phenoxo bridged Cd(II) metal centres are in a distorted octahedral environment. In complex 2, two of the three Cd(II) centres reside in a distorted octahedral environment and the remaining one enjoys a monocapped octahedral geometry. Altogether the variety in the bridging mode of two new salen-type ligands has been established through these complexes.  相似文献   

20.
Four novel ON donor Schiff bases (E)-3-((4-phenoxyphenylimino)methyl)benzene-1,2-diol (HL1),(E)-3-((4-(4-biphenyloxy)phenyliminomethyl)benzene-1,2-diol (HL2), (E)-3-((4-naphthoxyphenylimino)methyl)benzene-1,2-diol (HL3), (E)-3-((4-(2-naphthoxy)phenylimino)methyl)benzene-1,2-diol (HL4) and their copper(II) complexes bis((E)-3-((4-phenoxyphenylimino)methyl)benzene-1,2-diol) copper(II) (Cu(L1)2) bis((E)-3-((4-(4-biphenyloxy)phenylimino)methyl)benzene-1,2-diol) copper(II) (Cu(L2)2), bis((E)-3-((4-naphthoxyphenylimino)methyl)benzene-1,2-diol) copper(II) (Cu(L3)2), bis((E)-3-((4-(2-naphthoxy)phenylimino)methyl)benzene-1,2-diol) copper(II) (Cu(L4)2) have been synthesized and characterized by spectroscopic (FTIR, NMR, UV–visible) and elemental analysis. The crystal structures of HL1, HL2, HL3, and HL4 have been determined, which reveal intramolecular N-H?O (HL1, HL2, HL3, and HL4) hydrogen bonds in the solid state. Keto-amine and enol-imine tautomerism is exhibited by the Schiff bases in solid and solution states. The Schiff bases and their copper(II) complexes have been screened for their biological activities. In antimicrobial assays (antibacterial and antifungal), HL4 showed promising results against all strains through dual inhibition property while the rest of the compounds showed activity against selective strains. On the other hand, in cytotoxic, DPPH, and inhibition of hydroxyl (OH) free radical-induced DNA damage assays, the results were found significantly correlated with each other, i.e. the ligands HL1 and HL2 showed moderate activity while their complexes Cu(L1)2 and Cu(L2)2 exhibited prominent increase in activity. As the results of these assays are supporting each other, it represents the strong positive correlation and antioxidant nature of investigated compounds.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号